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Abstract

The major objective of this study is to develop preliminary concepts for controlling
orbit, attitude, and structural motions of very large Space Solar Power Satellites (SSPS)
in geosynchronous orbit. This study focuses on the 1.2-GW “Abacus” SSPS configura-
tion characterized by a square (3.2 × 3.2 km) solar array platform, a 500-m diameter
microwave beam transmitting antenna, and an earth-tracking reflector (500 × 700 m).
For this baseline Abacus SSPS configuration, we derive and analyze a complete set of
mathematical models, including external disturbances such as solar radiation pressure,
microwave radiation, gravity-gradient torque, and other orbit perturbation effects. An
integrated orbit, attitude, and structural control systems architecture, employing electric
thrusters, is developed.

A key parameter that characterizes the sensitivity of a satellite to solar radiation
pressure is the area-to-mass ratio, A/m; the value of A/m for the Abacus satellite is 0.4
m2/kg, which is relatively large when compared to 0.02 m2/kg for typical geosynchronous
communications satellites. Solar radiation pressure causes a cyclic drift in the longitude
of the Abacus satellite of 2 deg, east and west. Consequently, in addition to standard
north-south and east-west stationkeeping maneuvers for ±0.1 deg orbit position control,
active control of the orbit eccentricity using ion thrusters becomes nearly mandatory.
Furthermore, continuous sun tracking of the Abacus platform requires large control
torques to counter various disturbance torques.

The proposed control systems architecture utilizes properly distributed ion thrusters
to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll
torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw
microwave radiation torque, and the solar pressure force whose average value is about
60 N. A minimum of 500 ion engines of 1-N thrust level are required for simultane-
ous attitude and stationkeeping control. When reliability, lifetime, duty cycle, lower
thrust level, and redundancy of ion engines are considered, this number will increase
significantly. A significant control-structure interaction problem, possible for such very
large Abacus platform with the lowest structural mode frequency of 0.002 Hz, is avoided
simply by designing an attitude control system with very low bandwidth (< orbit fre-
quency). However, the proposed low-bandwidth attitude control system utilizes a con-
cept of cyclic-disturbance accommodating control to provide ±5 arcmin pointing of the
Abacus platform in the presence of large external disturbances and dynamic modeling
uncertainties. Approximately 85,000 kg of propellant per year is required for simulta-
neous orbit, attitude, and structural control using 500 1-N electric propulsion thrusters
with a specific impulse of 5,000 sec. Only 21,000 kg of propellant per year is required
if electric propulsion thrusters with a specific impulse of 20,000 sec can be developed.
As Isp is increased, the propellant mass decreases but the electric power requirement
increases; consequently, the mass of solar arrays and power processing units increases.
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Chapter 1

Introduction and Summary

This chapter provides an executive summary of this report. Detailed technical descrip-
tions are provided in Chapters 2 and 3.

1.1 Report Outline

This report is intended to provide a coherent and unified framework for mathematical
modeling, analysis, and control of very large Space Solar Power Satellites (SSPS) in
geosynchronous orbit.

Chapter 1 presents a summary of major findings and results, and it can be read as
an executive summary. Chapter 2 provides mathematical models for orbit, attitude, and
structural dynamics analysis and control design. Chapter 3 presents an integrated orbit,
attitude, and structural control system architecture, preliminary control analysis and
design, and computer simulation results.

Chapters 2 and 3 also contain introductory sections on the basic definitions and
fundamental concepts essential to mathematical modeling and control of space vehicles.
These sections summarize many of the useful results in spacecraft dynamics and control,
and they are primarily based on the material in Space Vehicle Dynamics and Control,
Wie, B., AIAA Education Series, AIAA, Washington, DC, 1998.

Chapter 4 provides a summary of the study results and recommendations for future
research.

Appendix A begins with a brief description of the general relationship for two-body
motion, then provides an overview of Encke’s method and how it is carried out in the
computer program, and ends with a presentation of the expressions used in computing
the various contributions to the perturbing forces exerted on the two bodies.

1



1.2 Evolution of Space Solar Power Satellites

A renewed interest in space solar power is spurring a reexamination of the prospects for
generating large amounts of electricity from large-scale, space-based solar power systems.
Peter Glaser [1], [2] first proposed the Satellite Solar Power Station (SSPS) concept in
1968 and received a U.S. patent on a conceptual design for such a satellite in 1973. As
a result of a series of technical and economic feasibility studies by NASA and DOE in
the 1970s, an SSPS reference system was developed in the late 1970s.

The 1979 SSPS reference system, as it is called, featured a very large solar array
platform (5.3 × 10.7 km) and a gimballed, microwave beam transmitting antenna (1 km
diameter). The total mass was estimated to be 50 ×106 kg. A ground or ocean-based
rectenna measuring 10 × 13 km would receive the microwave beam on the earth and
deliver up to 5 GW of electricity.

In 1995, NASA revisited the Space Solar Power (SSP) concept to assess whether
SSP-related technologies had advanced enough to alter significantly the outlook on the
economic and technical feasibility of space solar power. The “Fresh Look” study, [3],
conducted by NASA during 1995-1997 found that in fact a great deal had changed and
that multi-megawatt SSP satellites appear viable, with strong space applications. The
study also found that ambitious research, technology development and validation over
a period of perhaps 15-20 years are required to enable SSP concepts to be considered
“ready” for commercial development.

Recent studies by NASA as part of the SSP Exploratory Research and Technology
(SERT) program have produced a variety of new configurations of Space Solar Power
Satellites (SSPS) as reported in Refs. [4] and [5], and shown in Figure 1.1. Some of these
configurations are based on the passive gravity-gradient stabilization concept. However,
most other configurations require active three-axis attitude control to maintain contin-
uous sun tracking of the solar arrays in the presence of external disturbances including
the gravity-gradient torque. As illustrated in Figure 1.2, a cylindrical configuration,
which is not affected by the troublesome pitch gravity-gradient torque, has also been
considered by NASA [6].

Two other advanced concepts now under consideration by NASA [6] are shown in Fig-
ures 1.3 and 1.4. The Integrated Symmetrical Concentrator (ISC) concept, as illustrated
in Figure 1.3, features ultralight-weight materials and structures which may greatly re-
duce the projected cost of SSPS. In this concept, mirrors would reflect and focus sunlight
onto multi-bandgap, thin film photovoltaic arrays located next to a phased-array mi-
crowave transmitter. On the other hand, the Abacus/Reflector concept, as illustrated
in Figure 1.4, is characterized by its simple configuration consisting of an inertially
oriented, 3.2 × 3.2 km solar-array platform, a 500-m diameter microwave beam trans-
mitting antenna fixed to the platform, and a 500 × 700 m rotating reflector that tracks
the earth. This study focuses on the 1.2-GW Abacus SSPS configuration.
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MORPHOLOGY OF SSP CONFIGURATIONS
(Classifying the Animals in the Zoo)

Clamshell / Sandwich

T - Configurations

Suntower Dual Backbone
Suntower with

Sub-Arrays

Abacus
Rigid Monolithic

Array (1979
Reference)

Spin-
Tensioned
Monolithic

Array (Solar
Disk)Solar Parachute

Halo

Figure 1.1: Morphology of various SSPS concepts (Moore [4], [5]).
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Figure 1.2: A cylindrical SSPS concept with zero pitch gravity-gradient torque (Car-
rington and Feingold [6]).
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SERT Systems Integration, Analysis and Modeling

Integrated Symmetrical Concentrator

¥ Massive PMAD estimates motivated
minimum PMAD configuration

¥ Geosynchronous equatorial orbit, mast
POP

¥ Two primary mirror clamshells consisting
of inflatable flat mirrors (focal length > 10
km) reflect sunlight onto two centrally-
located PV arrays, <6X concentration ratio

¥ Energy converted to electrical @ PV
arrays, distributed by cables to
transmitter, converted to RF and
transmitted to Earth

¥ Clamshells track sun (one rotation per day
about boom metering structure, seasonal
beta tilting), transmitter faces rectenna on
ground

Concept sized for 1.2 GW
delivered to Grid on Earth

3562 x 3644 m
Clamshells,

36 456m mirrors

6378m
Mast

Quantum Dot PV
arrays canted 20o 

846mod,200mid

Docking Port

500m
RF Transmitter

Figure 1.3: Integrated Symmetrical Concentrator concept (Carrington and Feingold [6]).
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Abacus/Reflector Concept

Issues
¥ In-space construction, assembly, and or deployment of large

(500m aperture) reflector
¥ Surface precision (λ/20-λ/40) required by reflector
¥ Management of reflector temperature and thermal stresses
¥ Azimuth roll-ring and activated links must provide stable platform

for reflectors
Benefits
¥ Solar collectors always face Sun with very little, if any, shadowing.
¥ Solar concentrator uses shifting lens to accommodate seasonal

beta-tracking, eliminates rotational joints between cells and
abacus frame.

¥ Reflector design eliminates massive rotary joint and slip rings of
1979 Reference concept.

¥ Fixed orbital orientation allows continuous anti-Sun viewing for
radiators.

¥ Abacus structural frame provides runs for PMAD cabling and
permits Òplug and playÓ solar array approach for assembly and
maintenance.

¥ Triangular truss structure provides reasonable aspect ratio for
abacus.

¥ Activated links provide reflector tilt for target latitude accessability
¥ Reduced rotational mass since rotating reflector structure can be

made much lighter than large planar transmitter array
Orbit

Normal

Ball-screw
activated links

provide reflector tilt
for various latitude

pointing

Azimuth roll-ring
provides 

Earth tracking
Radiators

mounted on back
of transmitter

Prismatic abacus
frame supports
lightweight solar
concentrators,
provides structure
for robotic
maintenance

Arrays of
 lightweight

Fresnel
concentrators

Nadir

Figure 1.4: 1.2-GW Abacus/Reflector concept (Carrington and Feingold [6]).
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1.3 Research Objectives and Tasks

The major objective of this study is to develop preliminary concepts for controlling orbit,
attitude, and structural motions of very large Space Solar Power Satellites (SSPS) in
geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS configuration
shown in Figure 1.4.

The research objectives and tasks of this study, in support of the SSP Exploratory
Research and Technology (SERT) program of NASA, are as follows:

• Develop concepts for orbit, attitude, and structural control of very large Space
Solar Power Satellites (SSPS) using a variety of actuators such as control moment
gyros, momentum wheels, and electric propulsion thrusters

• Develop mathematical models, define a top-level control system architecture, and
perform control systems design and analysis for a baseline Abacus SSPS configu-
ration in geosynchronous orbit

• Determine the required number, size, placement, mass, and power for the actua-
tors to control the orbit, attitude and structural motions of the baseline Abacus
satellite. Also determine top-level estimates of attitude control system mass and
propellant consumption per year

• Further explore advanced control technology toward achieving the mission require-
ments of future large space vehicles, and provide the space systems designer with
options and approaches to meet the mission requirements of very large SSPS-type
platforms

Because of the limited scope of this study, the following important topics are not
studied in detail:

• Thermal distortion and structural vibrations due to solar heating
• Structural distortion due to gravity-gradient loading
• Autonomous stationkeeping maneuvers
• Simultaneous eccentricity and longitude control
• Attitude control during the solar eclipses
• Orbit and attitude control during assembly
• Attitude and orbit determination problem
• Reflector tracking and pointing control problem
• Electric propulsion systems
• Backup chemical propulsion systems

However, some of these important issues are discussed briefly at appropriate places
throughout this report.
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1.4 Abacus SSPS Configuration

This study focuses on the 1.2-GW Abacus SSPS concept, characterized by a huge (3.2 ×
3.2 km) solar-array platform, a 500-m diameter microwave beam transmitting antenna,
and a 500 × 700 m rotating reflector that tracks the earth. As illustrated in Figure 1.4,
some unique features of the Abacus satellite relative to the 1979 SSPS reference system,
can be described as follows:

• The transmitting antenna is not gimballed; instead, an azimuth roll-ring mounted,
rotating reflector provides earth pointing of the microwave beam.

• The rotating reflector design thus eliminates massive rotary joint and slip rings of
the 1979 SSPS reference concept.

• Ball-screw activated links provide reflector tilt for various latitude pointing.

1.4.1 Geometric Properties

The three major parts of the Abacus satellite and their dimensions are shown in Figure
1.5; the mass of each part is given in Table 1.1, together with the total mass and area of
the spacecraft. The mass of the reflector is approximately 3% of the total mass; therefore,
the reflector’s mass can be neglected in the analysis of attitude motion, simplifying the
task in two important respects. First, the Abacus satellite can be treated as a single
body rather than a multibody spacecraft. When the Abacus satellite is regarded as rigid,
as is the case in Sec. 2.3, the spacecraft’s moments and products of inertia for a set of
axes fixed in the solar array do not vary with time. Second, when the unsymmetrical
mass distribution of the reflector is left out of account, the principal axes of inertia of
the spacecraft with respect to the spacecraft’s mass center are parallel to the roll, pitch,
and yaw axes illustrated in Figure 1.5. The moments of inertia for these axes, henceforth
considered to be principal moments of inertia, are given in Table 1.1.

The center of pressure is located 100 m below the geometric center of the square
platform, and the center of mass is located 300 m below the geometric center along the
pitch axis. The mass of individual components, in units of metric tons, can be found in
Figure 1.6.

1.4.2 External Disturbances

External disturbances acting on the Abacus satellite include: solar radiation pressure
force, microwave radiation force, gravity-gradient torque, and other orbit perturbation
forces. Some of these disturbances are summarized in Table 1.2. Disturbance torques
in units of N-m due to solar pressure, microwave radiation, cm-cp offset, and cm/cp
location uncertainty can be expressed along the principal axes as:
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Table 1.1: Geometric and mass properties of the 1.2-GW Abacus satellite

Solar array mass 21 ×106 kg
Transmitting antenna mass 3 × 106 kg
Reflector mass 0.8 × 106 kg
Total mass m = 25 × 106 kg
Platform area A = 3200 m × 3200 m
Area-to-mass ratio A/m = 0.4 m2/kg
Roll inertia J1 = 2.8 × 1013 kg-m2

Pitch inertia J2 = 1.8 × 1013 kg-m2

Yaw inertia J3 = 4.6 × 1013 kg-m2

cm-cp offset 200 m (along pitch axis)
cm-cp offset (uncertainty) ±20 m (along roll axis)

Figure 1.5: Baseline 1.2-GW Abacus satellite.
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System Element Mass (MT) Comments

RF Transmitter Array Devices, Structure;  Input Power = 3614 MWe
   Transmitter Elements 1156 Diameter = 500 meters; 83903 Thousand Solid State Devices
   Transmitter Planar Array 1612 Mass = 8.21 kg/m2
   Transmitter Array Structure 281 Composite Truss Structure @ 1.43 kg/m2
   Reflector and Bearing Struct 844 Only Applicable to Reflector Concepts
   Transmitter Thermal Control 0 Integrated, Some TC Included in Transmitter Element Mass
   Add'l Structure Allowance 117 Allowance = 3%
Solar Conversion SLA, 1 wing(s) with array dimensions = 1772 m x 6200 m
   Solar Concentrators/Arrays 4317 Unit Height = 40 m, Width = 200 m, Mass = 3.664 MT, Power = 3.346 MW
   Add'l Structure Allowance 129 Allowance = 3%
Telecomm & Command 3 One set per solar array node (38 sets)
   Add'l Structure Allowance 0 Allowance = 3%
Integrating Structure 3563 Abacus, Total Length = 1772 meters
PMAD Cabling & Power Conversion, SPG Power  = 3941 MWe; Advanced PMAD
   Cabling 173 Total Length = 3162 km @ 0.055 kg/m, Voltage = 100 kV
   Array Converter Mass 3544 Mass based on 1178 Converters (1000 V to 100 kV), 3.346 MW Power Out
   Transmitter PMAD Mass 4362 Mass Includes Voltage Convertors, Switches, Harness & PMAD Thermal , 3.61 GW

   Rotary Joints, Switches, Etc. 1 Thruster Switches Only
Attitude Control/Pointing Sensors, Computers, Control  Effectors
   Dry Mass 452 Thrusters,  CMG's, Sensors etc. at each solar collector
   Propellant 665 Delta V = 50 m/s per year for 10 years
   Add'l Structure Allowance 14 Allowance = 3%
SEP Propulsion 831 LEO-GEO Transfer Stages
   Dry Mass 3815 Thruster Power = 50 kWe (8 Hall Thrusters, Isp = 2000 sec)
   Propellant 7361 Krypton
   Add'l Structure Allowance 114 Allowance = 3%
   Expendable Solar Arrays 664 Thin Film Arrays, 500 W/kg
Payload Mass 0
Satellite Launched Mass (MT) 33187 ETO Payloads = 40 MT per launch (830 Launches)
Satellite Orbited Mass (MT) 25162 At 35786 km

Rectenna Diameter (m) 7450

Abacus/Reflector Concept
ENTECH Concentrators, Solid State, 1200 MW Delivered from GEO

Harvey Feingold 5/26/00

Figure 1.6: Mass breakdown of Abacus components (Carrington and Feingold [6]).
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Table 1.2: Solar pressure and microwave radiation disturbances

Solar pressure force (4.5E-6)(1.3)(A) = 60 N
Solar-pressure-induced acceleration (4.5E-6)(1.3)(A/m) = 2.4 ×10−6 m/s2

Solar pressure torque (roll) 60 N × 200 m = 12,000 N-m
Solar pressure torque (pitch) 60 N × 20 m = 1,200 N-m
Transmitter/reflector radiation force 7 N (rotating force)
Transmitter/reflector radiation torque 7 N ×1700 m = 11,900 N-m

Roll: d1 ≈ 12, 000− 11, 900 cosnt

Pitch: d2 ≈ 1, 200

Yaw: d3 ≈ −11, 900 sinnt

where n is the orbital rate of the Abacus satellite, and t is time. The constant pitch
disturbance torque of 1,200 N-m is due to the assumed cm-cp offset uncertainty of 20
m along the roll axis. In addition to these disturbances, gravity-gradient disturbance
torques are also acting on the Abacus satellite. It is assumed that the electric currents
circulate in the solar array structure in such a way that magnetic fields cancel out and
the Abacus satellite is not affected by the magnetic field of the earth.

1.4.3 Orbit Parameters and Control Requirements

To describe a satellite orbit about the earth, we often employ six scalars, called the
six orbital elements. Three of these scalars specify the orientation of the orbit plane
with respect to the geocentric-equatorial reference frame, also called the Earth-Centered
Inertial (ECI) reference system, which has its origin at the center of the earth, as shown
in Figure 1.7. Note that this reference frame is not fixed to the earth and is not rotating
with it; rather the earth rotates about it. The (X, Y ) plane of the geocentric-equatorial
reference frame is the earth’s equatorial plane, simply called the equator. The Z-axis
is along the earth’s polar axis of rotation. The X-axis is pointing toward the vernal
equinox, the point in the sky where the sun crosses the equator from south to north on
the first day of spring. The vernal equinox direction is often denoted by the symbol Υ.

The six classical orbital elements consist of five independent quantities which are
sufficient to completely describe the size, shape, and orientation of an orbit, and one
quantity required to pinpoint the position of a satellite along the orbit at any particular
time, as also illustrated in Figure 1.7.
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Figure 1.7: Orbit orientation with respect to the geocentric-equatorial reference frame,
also called the Earth-Centered Inertial (ECI) reference system. A near circular orbit is
shown in this figure.

Six such classical orbital elements are:

a = the semimajor axis

e = the eccentricity

i = the inclination of the orbit plane

Ω = the right ascension or longitude of the ascending node

ω = the argument of the perigee

M = the mean anomaly

A traditional set of the six classical orbital elements includes the perigee passage time
instead of the mean anomaly. The elements a and e determine the size and shape of the
elliptic orbit, respectively, and tp or M relates position in orbit to time. The angles Ω
and i specify the orientation of the orbit plane with respect to the geocentric-equatorial
reference frame. The angle ω specifies the orientation of the orbit in its plane.

Basic orbital characteristics and control requirements for the Abacus satellite in
geosynchronous orbit are summarized in Table 1.3.
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Table 1.3: Orbit parameters and control requirements

Earth’s gravitational parameter µ = 398,601 km3/s2

Geosynchronous orbit (e, i ≈ 0) a = 42,164 km
Orbit period 23 hr 56 min 4 sec = 86,164 sec
Orbit rate n = 7.292 ×10−5 rad/sec
Longitude location TBD
Stationkeeping accuracy ±0.1 deg (longitude/latitude)
Solar array pointing accuracy ±0.5 deg for roll/pitch axes
Microwave beam pointing accuracy ±5 arcmin

1.5 Major Findings and Results

In this section, a summary of major findings and results from this study is presented.
Detailed technical discussions of the development of mathematical models and a control
system architecture will be presented in Chapters 2 and 3.

1.5.1 Technical Issues

Momentum Storage Requirement

Assuming that the gravity-gradient torque is the only external disturbance torque acting
along the pitch axis, we consider the pitch equation of motion of the Abacus satellite in
geosynchronous orbit given by

J2θ̈2 =
3n2

2
(J3 − J1) sin 2θ2 + u2 (1)

where J1, J2, and J3 are, respectively, the roll, pitch, and yaw principal moments of
inertia; θ2 is the pitch angle measured from the LVLH (local vertical and local horizontal)
reference frame; n is the orbit rate; and u2 is the pitch control torque.

For continuous sun pointing of the Abacus satellite with θ2 = nt, the pitch control
torque required to counter the cyclic gravity-gradient torque simply becomes

u2 = −3n2

2
(J3 − J1) sin 2nt (2)

with peak values of ±143,000 N-m. If angular momentum exchange devices, such as
momentum wheels (MWs) or control moment gyros (CMGs), are to be employed for
pitch control, the peak angular momentum to be stored can then be estimated as

Hmax =
3n

2
(J3 − J1) = 2× 109 N-m-s (3)
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Table 1.4: A large single-gimbal CMG

Cost $1M
Momentum 7,000 N-m-s
Max torque 4,000 N-m
Peak power 500 W
Mass 250 kg
Momentum/mass 28 N-m-s/kg

Table 1.5: A space-constructed, large-diameter momentum wheel [7]

Momentum = 4 × 108 N-m-s Rim radius = 350 m
Max torque = 30,000 N-m Mass = 6000 kg
Material = aluminum Max power = 19 kW
Natural frequency = 0.22 Hz Max speed = 6 rpm
Momentum/mass = 66,000 N-m-s/kg cost = TBD

This is is about 100,000 times the angular momentum storage requirement of the In-
ternational Space Station (ISS). The ISS is to be controlled by four double-gimballed
CMGs with a total momentum storage capability of about 20,000 N-m-s. The double-
gimballed CMGs to be employed for the ISS have a momentum density of 17.5 N-m-s/kg,
and future advanced flywheels may have a larger momentum density of 150 N-m-s/kg.
Basic characteristics of a large single-gimbal CMG are also summarized in Table 1.4.

Based on the preceding discussion, it can be concluded that a traditional momentum
management approach using conventional CMGs (or even employing future advanced
flywheels) is not a viable option for controlling very large Space Solar Power Satellites.

To meet the momentum storage requirement of very large SSPS, a concept of con-
structing large-diameter momentum wheels in space has been studied in the late 1970s
[7]. An example of such space-assembled, large-diameter wheels is summarized in Table
1.5. About 5 to 7 such large-diameter momentum wheels are required for the Abacus
satellite. The concept of lightweight, space-assembled (or deployable, inflatable) large-
diameter momentum wheels merits further study, but is beyond the scope of the present
report.

In an attempt to resolve the angular momentum storage problem of large sun-pointing
spacecraft, a quasi-inertial sun-pointing, pitch control concept was developed by Elrod
[8] in 1972, and further investigated by Juang and Wang [9] in 1982. However, such a
“free-drift” concept is not a viable option for the Abacus satellite because of the large
pitch attitude peak error of 18.8 deg and its inherent sensitivity with respect to initial
phasing and other orbit perturbations.
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Because the pitch gravity-gradient torque becomes naturally zero for cylindrical,
spherical or beam-like satellites with J1 = J3, a cylindrical SSPS configuration was also
studied by NASA (see Figure 1.2) to simply avoid such a troublesome pitch gravity-
gradient torque problem.

Solar Radiation Pressure and Large Area-to-Mass Ratio

Despite the importance of the cyclic pitch gravity-gradient torque, this study shows
that the solar radiation pressure force is considerably more detrimental to control of the
Abacus satellite (and other large SSPS) because of an area-to-mass ratio that is very
large compared to contemporary, higher-density spacecraft.

The significant orbit perturbation effect of the solar pressure force on large spacecraft
with large area-to-mass ratios has been investigated by many researchers in the past [10]-
[15]. A detailed physical description of the solar radiation pressure can be found in a
recent book on solar sailing by McInnes [14]. The solar pressure effects on formation
flying of satellites with different area-to-mass ratios were also recently investigated by
Burns et al. [15].

For typical geosynchronous communications satellites, we have

Area-to-mass ratio A/m ≈ 0.02 m2/kg

Solar pressure perturbation acceleration ≈ 0.12× 10−6 m/s2

∆e =
3π(4.5× 10−6)(1.3)A/m

n2a
≈ 4.9× 10−6 per day

Earth’s gravitational acceleration = 0.224 m/s2

Earth’s oblateness J2 perturbation = 2.78× 10−6 m/s2

Solar gravitational perturbation < 4× 10−6 m/s2

Lunar gravitational perturbation < 9× 10−6 m/s2

⇒ Stationkeeping ∆V ≈ 50 m/sec per year

⇒ ∆m = m

(
1− exp

(
−∆V

gIsp

))
≈ 17 kg/year

where m is assumed as 1000 kg, g = 9.8 m/s2, Isp = 300 sec

For the Abacus satellite, however, we have

Area-to-mass ratio A/m ≈ 0.4 m2/kg

Solar pressure force ≈ 60 N

Solar pressure perturbation acceleration ≈ 2.4× 10−6 m/s2

Earth’s gravitational acceleration = 0.224 m/s2

Earth’s oblateness J2 perturbation = 2.78× 10−6 m/s2

Solar gravitational perturbation < 4× 10−6 m/s2
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Lunar gravitational perturbation < 9× 10−6 m/s2

∆e =
3π(4.5× 10−6)(1.3)A/m

n2a
≈ 1× 10−4 per day

⇒ Longitude drift ∆λ = 2∆e ≈ 0.0115 deg/day

⇒ maximum ∆e ≈ 0.018 at the mid year

⇒ maximum ∆λ = 2∆e ≈ 2 deg; maximum ∆a ≈ 1.8 km

⇒ Orbit eccentricity control is necessary

⇒ ∆m =
(60)(24× 3600× 365)

5000× 9.8
≈ 40, 000 kg/year with Isp = 5000 sec

Typical north-south and east-west stationkeeping maneuvers for the Abacus satellite
will also require

∆m = m

(
1− exp

(
−∆V

gIsp

))
≈ 30, 000 kg/year

where m = 25× 106 kg, ∆V = 50 m/s per year, g = 9.8 m/s2, and Isp = 5000 sec.
The results of 30-day simulations of orbital motion of the Abacus satellite, with the

effects of the earth’s oblateness and triaxiality, luni-solar perturbations, and 60-N solar
pressure force included, are shown in Figures 1.8 and 1.9. It is worth noting the extent
to which eccentricity and inclination are perturbed.

The initial values used in the simulations correspond to a circular, equatorial orbit
of radius 42164.169 km; therefore, the initial orbital elements are

a = 42164.169 km

e = 0

i = 0 deg

Ω = 0 deg

ω = 0 deg

The epoch used to calculate the solar and lunar positions, as well as the Earth’s orien-
tation in inertial space, is March 21, 2000. In order to place the spacecraft at an initial
terrestrial longitude of 75.07 deg (one of the stable longitudes), a true anomaly θ of
253.89 deg is used.

These elements correspond to an initial position and velocity of

~r = −11698.237 ~I − 40508.869 ~J + 0 ~K km

~v = 2.954 ~I − 0.853 ~J + 0 ~K km/s
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Figure 1.8: Orbit simulation results with the effects of the earth’s oblateness and triax-
iality, luni-solar perturbations, and 60-N solar radiation pressure force.
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Figure 1.9: Orbit simulation results with the effects of the earth’s oblateness and triax-
iality, luni-solar perturbations, and 60-N solar radiation pressure force (continued).
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Table 1.6: Electric propulsion systems for the 1.2-GW Abacus satellite

Thrust, T ≥ 1 N
Specific impulse, Isp = T/(ṁg) ≥ 5,000 sec
Exhaust velocity, Ve = Ispg ≥ 49 km/s
Total efficiency, η = Po/Pi ≥ 80%
Power/thrust ratio, Pi/T ≤ 30 kW/N
Mass/power ratio ≤ 5 kg/kW
Total peak thrust 200 N
Total peak power 6 MW
Total average thrust 80 N
Total average power 2.5 MW
Number of 1-N thrusters ≥ 500
Total dry mass ≥ 75,000 kg
Propellant consumption 85,000 kg/year

Note: T = ṁVe, Po = 1
2
ṁV 2

e = 1
2
TVe, Po/T = 1

2
Ve = ideal power/thrust ratio, Pi/T =

1
2η
Ve, Isp = T/(ṁg) = Ve/g, Ve = Ispg where g = 9.8 m/s2, ṁ is the exhaust mass flow

rate, Pi is the input power, and Po is the output power.

1.5.2 Control Systems Architecture

The preceding section illustrates the consequences of solar pressure acting on a spacecraft
with a large area-to-mass ratio. If left uncontrolled, this can cause a cyclic drift in the
longitude of the Abacus satellite of 2 deg, east and west. Thus, in addition to standard
north-south and east-west stationkeeping maneuvers for ±0.1 deg orbit position control,
active control of the orbit eccentricity using electric thrusters with high specific impulse,
Isp, becomes mandatory. Furthermore, continuous sun tracking of the Abacus satellite
requires large control torques to counter various disturbance torques. A control systems
architecture developed in this study utilizes properly distributed ion thrusters to counter,
simultaneously, the cyclic pitch gravity-gradient torque and solar radiation pressure.

Electric Propulsion Systems

Basic characteristics of electric propulsion systems proposed for the Abacus satellite are
summarized in Table 1.6. Approximately 85,000 kg of propellant per year is required
for simultaneous orbit, attitude, and structural control using 500 1-N electric propulsion
thrusters with Isp = 5,000 sec. The yearly propellant requirement is reduced to 21,000 kg
if an Isp of 20,000 sec can be achieved. As Isp is increased, the propellant mass decreases
but the electric power requirement increases; consequently, the mass of solar arrays and
power processing units increases. Based on 500 1-N thrusters, a mass/power ratio of
5 kg/kW, and a power/thrust ratio of 30 kW/N, the total dry mass (power processing
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Figure 1.10: A schematic illustration of the NSTAR 2.3-kW, 30-cm diameter ion thruster
on Deep Space 1 Spacecraft (92-mN maximum thrust, specific impulse ranging from
1,900 to 3,200 sec, 25 kW/N, overall efficiency of 45–65%).

units, thrusters, tanks, feed systems, etc.) of electric propulsion systems proposed for
the Abacus satellite is estimated as 75,000 kg.

A schematic illustration of the 2.3-kW, 30-cm diameter ion engine on the Deep Space
1 spacecraft is given in Figure 1.10, which is formally known as NSTAR, for NASA Solar
electric propulsion Technology Application Readiness system. The maximum thrust level
available from the NSTAR ion engine is about 92 mN and throttling down is achieved by
feeding less electricity and xenon propellant into the propulsion system. Specific impulse
ranges from 1,900 sec at the minimum throttle level to 3,200 sec.

In principle, an electric propulsion system employs electrical energy to accelerate
ionized particles to extremely high velocities, giving a large total impulse for a small
consumption of propellant. In contrast to standard propulsion, in which the products of
chemical combustion are expelled from a rocket engine, ion propulsion is accomplished
by giving a gas, such as xenon (which is like neon or helium, but heavier), an electrical
charge and electrically accelerating the ionized gas to a speed of about 30 km/s. When
xenon ions are emitted at such high speed as exhaust from a spacecraft, they push the
spacecraft in the opposite direction. However, the exhaust gas from an ion thruster
consists of large numbers of positive and negative ions that form an essentially neutral
plasma beam extending for large distances in space. It seems that little is known yet
about the long-term effect of such an extensive plasma on geosynchronous satellites.
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Orbit, Attitude, and Structural Control Systems

A control systems architecture developed in this study is shown in Figure 1.11. The
proposed control systems utilize properly distributed ion thrusters to counter, simul-
taneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by
cm-cp offset and solar pressure, the cyclic roll/yaw microwave radiation torque, and the
solar pressure force whose average value is 60 N. A control-structure interaction prob-
lem of the Abacus platform with the lowest structural mode frequency of 0.002 Hz is
avoided simply by designing an attitude control system with very low bandwidth (<
orbit frequency). However, the proposed low-bandwidth attitude control system utilizes
a concept of cyclic-disturbance accommodating control to provide ±5 arcmin pointing
of the Abacus platform in the presence of large external disturbances and dynamic mod-
eling uncertainties. High-bandwidth, colocated direct velocity feedback, active dampers
may need to be properly distributed over the platform.

Placement of a minimum of 500 1-N electric propulsion thrusters at 12 different
locations is illustrated in Figure 1.12. In contrast to a typical placement of thrusters
at the four corners, e.g., employed for the 1979 SSPS reference system, the proposed
placement shown in Figure 1.12 minimizes roll/pitch thruster couplings as well as the
excitation of platform out-of-plane bending modes. A minimum of 500 ion engines of 1-
N thrust level are required for simultaneous attitude and stationkeeping control. When
reliability, lifetime, duty cycle, lower thrust level, and redundancy of ion engines are
considered, this number will increase significantly.

1.5.3 Attitude and Orbit Control Simulation Results

Computer simulation results of a case with initial attitude errors of 10 deg in the pres-
ence of various dynamic modeling uncertainties (e.g., ±20% uncertainties in moments
and products of inertia, cm location, principal axes, etc.) are shown in Figure 1.13.
The proposed low-bandwidth attitude control system utilizing the concept of cyclic-
disturbance accommodating control meets the ±5 arcmin pointing requirement of the
Abacus platform in the presence of large external disturbances and dynamic modeling
uncertainties. Proper roll/pitch thruster firings needed for simultaneous eccentricity and
roll/pitch attitude control can be seen in Figure 1.14. Nearly linear control forces are
generated by on-off modulation of individual 1-N thrusters, as can be seen in Figure 1.14.
The total thrusting force from the roll/pitch thrusters #1 through #4 nearly counters
the 60-N solar pressure force.

Orbit control simulation results with the effects of the earth’s oblateness and triax-
iality, luni-solar perturbations, 60-N solar pressure force, and simultaneous orbit and
attitude control thruster firings are shown in Figures 1.16 and 1.17. In Figure 1.17,
FZ is the orbit inclination control force and FX is the solar pressure countering control
force. It can be seen that the inclination, eccentricity, satellite longitude location, and
the Z-axis orbit position are all properly maintained.
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Figure 1.11: An integrated orbit, attitude, and structural control system architecture
employing electric propulsion thrusters.
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Figure 1.13: Control simulation results with cyclic-disturbance rejection control in the
presence of various dynamic modeling uncertainties.
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Figure 1.14: Roll/pitch thruster firings for simultaneous eccentricity and roll/pitch con-
trol.
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Figure 1.15: Yaw thruster firings for simultaneous inclination and yaw attitude control.
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Figure 1.16: Orbit control simulation results with simultaneous orbit and attitude con-
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1.6 Summary and Recommendations for Future Re-

search

1.6.1 Summary of Study Results

The area-to-mass ratio, 0.4 m2/kg, is a key indication of the sensitivity of the Abacus
satellite to solar radiation pressure. Left unopposed, solar radiation pressure can cause a
cyclic drift in the longitude of the Abacus satellite of 2 deg, east and west. Consequently,
in addition to standard north-south and east-west stationkeeping maneuvers, active
control of the orbit eccentricity using high-Isp electric thrusters becomes mandatory.

The proposed control system architecture utilizes properly distributed 500 1-N ion
thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular
roll torque caused by cm-cp offset and solar pressure, the cyclic roll/yaw microwave
radiation torque, and the solar pressure force of an average value of about 60 N. In
contrast to a typical placement of thrusters at the four corners, e.g., employed for the
1979 SSPS reference system, the proposed placement shown in Figure 1.12 minimizes
roll/pitch thruster couplings as well as the excitation of platform out-of-plane bending
modes. A control-structure interaction problem of the Abacus platform with the lowest
structural mode frequency of 0.002 Hz is avoided simply by designing an attitude control
system with very low bandwidth (< orbit frequency). However, the proposed low-
bandwidth control system utilizes a concept of cyclic-disturbance accommodating control
to provide ±5 arcmin pointing of the Abacus platform in the presence of large external
disturbances and dynamic modeling uncertainties.

Approximately 85,000 kg of propellant per year is required for simultaneous orbit,
attitude, and structural control using 500 1-N electric propulsion thrusters with Isp
= 5,000 sec; yearly propellant consumption is reduced to 21,000 kg if the thrusters
have an Isp of 20,000 sec. As Isp is increased, the propellant mass decreases but the
electric power requirement increases; consequently, the mass of solar arrays and power
processing units increases. The total dry mass (power processing units, thrusters, tanks,
feed systems, etc.) of electric propulsion systems of the Abacus satellite is estimated as
75,000 kg, based on 500 1-N thrusters and a mass/power ratio of 5 kg/kW. The peak
power requirement is estimated as 6 MW based on the peak thrust requirement of 200
N and a power/thrust ratio of 30 kW/N.

1.6.2 Recommendations for Future Research

The baseline control system architecture developed for the Abacus satellite requires
a minimum of 500 ion engines of 1-N thrust level. The capability of present electric
thrusters are orders of magnitude below that required for the Abacus satellite. If the
xenon fueled, 1-kW level, off-the-shelf ion engines available today, are to be employed,
the number of thrusters would be increased to 15,000. The actual total number of ion
engines will further increase significantly when we consider the ion engine’s lifetime, relia-
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Table 1.7: Technology advancement needs for the Abacus SSPS

Current Enabling
Electric Thrusters 3 kW, 100 mN 30 kW, 1 N

Isp = 3000 sec Isp > 5000 sec
(5,000–10,000 thrusters) (500–1,000 thrusters)

CMGs 20 N-m-s/kg 2,000 N-m-s/kg
5,000 N-m-s/unit 500,000 N-m-s/unit
(500,000 CMGs) (5,000 CMGs)

Space-Assembled 66,000 N-m-s/kg
Momentum Wheels 4 ×108 N-m-s/unit
(300-m diameter) (5–10 MWs)

bility, duty cycle, redundancy, etc. Consequently, a 30-kW, 1-N level electric propulsion
thruster with a specific impulse greater than 5,000 sec needs to be developed for the
Abacus satellite if excessively large number of thrusters are to be avoided.

Several high-power electric propulsion systems are currently under development. For
example, the NASA T-220 10-kW Hall thruster recently completed a 1,000-hr life test.
This high-power (over 5 kW) Hall thruster provides 500 mN of thrust at a specific
impulse of 2,450 sec and 59% total efficiency. Dual-mode Hall thrusters, which can
operate in either high-thrust mode or high-Isp mode for efficient propellant usage, are
also being developed.

The exhaust gas from an electric propulsion system forms an essentially neutral
plasma beam extending for large distances in space. Because little is known yet about
the long-term effect of an extensive plasma on geosynchronous satellites with regard to
communications, solar cell degradation, contamination, etc, the use of lightweight, space-
assembled large-diameter momentum wheels may also be considered as an option for the
Abacus satellite; therefore, these devices warrant further study. The electric thrusters,
CMGs, and momentum wheels are compared in Table 1.7 in terms of their technology
advancement needs. It is emphasized that both electrical propulsion and momentum
wheel technologies require significant advancement to support the development of large
SSPS.

Despite the huge size and low structural frequencies of the Abacus satellite, the
control-structure interaction problem appears to be a tractable one because the tight
pointing control requirement can be met even with a control bandwidth that is much
lower than the lowest structural frequency. However, further detailed study needs to
be performed for achieving the required 5-arcmin microwave beam pointing accuracy
in the presence of transmitter/reflector-coupled structural dynamics, Abacus platform
thermal distortion and vibrations, hardware constraints, and other short-term impulsive
disturbances.
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Although the rotating reflector concept of the Abacus satellite eliminates massive
rotary joint and slip rings of the 1979 SSPS reference concept, the transmitter fixed to
the Abacus platform results in unnecessarily tight pointing requirements imposed on the
platform. Further system-level tradeoffs will be required for the microwave-transmitting
antenna design, such as whether or not to gimbal it with respect to the platform, use
mechanical or electronic beam steering, and so forth.

The following research topics of practical importance in the areas of dynamics and
control of large flexible space platforms also need further detailed investigation to support
the development of large SSPS.

• Thermal distortion and vibration due to solar heating
• Structural distortion due to gravity-gradient loading
• Autonomous stationkeeping maneuvers
• Simultaneous eccentricity and longitude control
• Attitude control during the solar eclipses
• Orbit and attitude control during assembly
• Attitude and orbit determination problem
• Reflector tracking and pointing control problem
• Microwave beam pointing analysis and simulation
• Space-assembled, large-diameter momentum wheels
• Electric propulsion systems for both orbit transfer and on-orbit control
• Backup chemical propulsion systems for attitude and orbit control
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Chapter 2

Mathematical Models of Large
Sun-Pointing Spacecraft

2.1 Introduction to Orbit Dynamics

This section provides a summary of the basic definitions and fundamentals in orbital
mechanics. It also provides the necessary background material for a non-Keplerian
orbit model with various orbit perturbation effects to be discussed later in this chapter.
Further detailed discussions of orbital mechanics can be found in Ref. [16].

2.1.1 Two-Body System

Consider two particles P1 and P2, of masses m1 and m2, whose position vectors from a
point fixed in an inertial reference frame are given by ~R1 and ~R2, respectively, as shown
in Figure 2.1. Applying Newton’s second law and his law of gravity to each particle, we
write the equations of motion as

m1
~̈R1 = +

Gm1m2

r3
~r (1)

Figure 2.1: Two-body problem.
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m2
~̈R2 = −Gm1m2

r3
~r (2)

where ~r = ~R2 − ~R1 is the position vector from P1 to P2, r = |~r|, ~̈Ri = d2 ~Ri/dt
2 is the

inertial acceleration of Pi, and G = 6.6695×10−11N·m2/kg2 is the universal gravitational
constant.

Eliminating m1 from Eq. (1), and m2 from Eq. (2), and subtracting the first result
from the second, we obtain

~̈r +
µ

r3
~r = 0 (3)

where ~̈r = d2~r/dt2 is the inertial acceleration of P2 with respect to P1, r = |~r|, and
µ = G(m1 + m2) is called the gravitational parameter of the two-body system under
consideration. Equation (3) describes the motion of P2 relative to P1 in an inertial
reference frame and it is the fundamental equation in the two-body problem.

In most practical cases of interest in orbital mechanics, the mass of the primary
body is much greater than that of the secondary body (i.e., m1 À m2), which results
in µ ≈ Gm1. For example, for a sun-planet system, we have µ ≈ µ¯ ≡ GM¯, where
µ¯ denotes the gravitational parameter of the sun and M¯ denotes the mass of the sun.
Likewise, for an earth-satellite system, we have µ ≈ µ⊕ ≡ GM⊕, where µ⊕ denotes
the gravitational parameter of the earth and M⊕ denotes the mass of the earth. It is
worth emphasizing that, in the two-body problem, the primary body is not inertially
fixed. The two-body problem must be distinguished from a so-called restricted two-body
problem in which the primary body of mass m1 is assumed to be inertially fixed. Such
a restricted two-body problem is often described by central force motion of a particle of
mass m2 around the inertially-fixed primary body of mass m1.

Energy Equation

The energy equation of the two-body system is given by

v2

2
− µ

r
= E (4)

where v ≡ |~v| = |~̇r|, the constant E is called the total mechanical energy per unit mass
or the specific mechanical energy, v2/2 is the kinetic energy per unit mass, and −µ/r
is a potential energy per unit mass. This equation represents the law of conservation of
energy for the two-body system.

Angular Momentum Equation

Defining the angular momentum per unit mass or the specific angular momentum as

~h = ~r × ~̇r ≡ ~r × ~v (5)
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we obtain
d~h

dt
= 0 or ~h = constant vector (6)

Thus we have the law of conservation of angular momentum for the two-body system.
Since ~h is the vector cross product of ~r and ~v, it is always perpendicular to the plane
containing ~r and ~v. Furthermore, since ~h is a constant vector, ~r and ~v always remain in
the same plane, called an orbital plane. Therefore, we conclude that the orbital plane is
fixed in an inertial reference frame, and the angular momentum vector ~h is perpendicular
to the orbital plane.

Eccentricity Vector

Taking the post-cross product of Eq. (3) with ~h, finding an expression for a vector
whose inertial derivative is equal to the preceding cross product, and then integrating,
we obtain

~̇r × ~h− µ

r
~r = constant vector = µ~e (7)

where a constant vector ~e is called the eccentricity vector. Note that the constant vector
µ~e can also be written as

µ~e = ~v × ~h− µ

r
~r = ~v × (~r × ~v)− µ

r
~r

= (v2 − µ

r
)~r − (~r · ~v)~v

Taking the dot product of Eq. (7) with ~r, we find

h2 − µr = µre cos θ (8)

where h ≡ |~h|, e ≡ |~e|, and θ is the angle between ~r and ~e. The angle θ is called the true
anomaly and e is called the eccentricity of the orbit.

Kepler’s First Law

Equation (8) can be further transformed into the orbit equation of the form:

r =
h2/µ

1 + e cos θ
(9)

which can be rewritten as
r =

p

1 + e cos θ
(10)

where p, called the parameter, is defined as

p =
h2

µ
(11)
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Equation (10) is the equation of a conic section, written in terms of polar coordinates
r and θ with the origin located at a focus, with θ measured from the point on the conic
nearest the focus. Kepler’s first law states that the orbit of each planet around the sun
is an ellipse, with the sun at one focus. Since an ellipse is one type of conic section,
Kepler’s first law follows from this equation. The size and shape of the orbit depends
on the parameter p and the eccentricity e, respectively.

Kepler’s Second and Third Laws

The orbital area, ∆A, swept out by the radius vector ~r as it moves through a small angle
∆θ in a time interval ∆t, is given as

∆A =
1

2
r(r∆θ)

Then the areal velocity of the orbit, denoted by dA/dt, can be shown to be constant, as
follows:

dA

dt
= lim

∆t→0

∆A

∆t
= lim

∆t→0

1

2
r2 ∆θ

∆t
=

1

2
r2θ̇ =

1

2
h = constant (12)

which is a statement of Kepler’s second law: the radius vector from the sun to a planet
sweeps out equal areas in equal time intervals.

The period of an elliptical can be found by dividing the total orbital area by the
areal velocity, as follows:

P =
A

dA/dt
=
πab

h/2
=

πa2
√

1− e2√
µa(1− e2)/2

= 2π

√
a3

µ
(13)

where a is the semimajor axis and b is the semiminor axis of an ellipse. This can be
rewritten as

P 2 =
4π2

µ
a3

which is, in fact, a statement of Kepler’s third law: the square of the orbital period of
a planet is proportional to the cube of the semimajor axis of the ellipse. Note that the
ratio P 2/a3 is not constant for all planets because µ = G(M¯ + m2), where M¯ is the
mass of the sun and m2 is the mass of the planet. Therefore, the ratio differs slightly
for each planet.

Kepler’s Time Equation

Now we introduce a geometrical parameter known as the eccentric anomaly to find the
position in an orbit as a function of time or vice versa.

Consider an auxiliary circle, which was first introduced by Kepler, as shown in Figure
2.2. From this figure, we have

a cosE + r cos(π − θ) = ae (14)
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Figure 2.2: The eccentric anomaly E of an elliptic orbit.

where E is the eccentric anomaly and θ is the true anomaly. Using the orbit equation

r =
p

1 + e cos θ
=

a(1− e2)

1 + e cos θ
(15)

we rewrite Eq. (14) as

cosE =
e+ cos θ

1 + e cos θ
(16)

Using the fact that all lines parallel to the minor axis of an ellipse have a foreshort-
ening factor of b/a with respect to a circle with a radius of a, we obtain

r sin θ =
b

a
(a sinE) = a

√
1− e2 sinE (17)

Combining this with the orbit equation, we obtain

sinE =

√
1− e2 sin θ

1 + e cos θ
(18)

Furthermore, we have

tan
E

2
=

sinE

1 + cosE
=

√
1− e
1 + e

tan
θ

2
(19)

from which E or θ can be determined without quadrant ambiguity.

36



Equation (14) can be rewritten as

r cos θ = a(cosE − e) (20)

Thus, squaring Eqs. (17) and (20) and adding them, we obtain

r = a(1− e cosE) (21)

which is the orbit equation in terms of the eccentric anomaly E and its geometrical
constants a and e.

The area swept out by the position vector ~r is

(t− tp)Ȧ = (t− tp)
ab

2

√
µ

a3
(22)

where tp is the perigee passage time, (t − tp) is the elapsed time since perigee passage,
and Ȧ is the constant areal velocity given by Kepler’s third law:

Ȧ =
πab

P
=

πab

2π
√
a3/µ

=
ab

2

√
µ

a3
(23)

This area of the ellipse is the same as the area of the auxiliary circle swept out by the
vector ~R, multiplied by the factor b/a. Thus we have

ab

2

√
µ

a3
(t− tp) =

b

a
(
1

2
a2E − ae

2
a sinE)

=
ab

2
(E − e sinE) (24)

which becomes √
µ

a3
(t− tp) = E − e sinE (25)

where E is in units of radians.
Defining the mean anomaly M and the orbital mean motion n, as follows:

M = n(t− tp) (26)

n =

√
µ

a3
(27)

we obtain
M = E − e sinE (28)

which is known as Kepler’s time equation for relating time to position in orbit.
The time required to travel between any two points in an elliptical orbit can be

simply computed by first determining the eccentric anomaly E corresponding to a given
true anomaly θ and then by using Kepler’s time equation.

Kepler’s time equation (28) does not provide time values, (t− tp), greater than one-
half of the orbit period, but it gives the elapsed time since perigee passage in the shortest
direction. Thus, for θ > π, the result obtained from Eq. (28) must be subtracted from
the orbit period to obtain the correct time since perigee passage.
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Figure 2.3: Orbit orientation with respect to the geocentric-equatorial reference frame,
also called the Earth-Centered Inertial (ECI) reference system. A near circular orbit is
shown in this figure.

2.1.2 Orbital Elements

In general, the two-body system characterized by Eq. (3) has three degrees of freedom,
and the orbit is uniquely determined if six initial conditions are specified, three of which
are associated with ~r at some initial time, and three of which are associated with ~v ≡ ~̇r.
In orbital mechanics, the constants of integration or integrals of the motion are also
referred to as orbital elements and such initial conditions can be considered as six possible
orbital elements.

To describe a satellite orbit about the earth, we often employ six other scalars,
called the six orbital elements. Three of these scalars specify the orientation of the
orbit plane with respect to the geocentric-equatorial reference frame, often called the
Earth-Centered Inertial (ECI) reference system, which has its origin at the center of the
earth. The fundamental plane in the ECI system, which is the earth’s equatorial plane,
has an inclination of approximately 23.45 deg with respect to the plane of the earth’s
heliocentric orbit, known as the ecliptic plane. A set of orthogonal unit vectors {~I, ~J, ~K}
is selected as basis vectors of the ECI reference frame with (X, Y, Z) coordinates, as
shown in Figure 2.3.

Note that the ECI reference frame is not fixed to the earth and is not rotating with it;
rather the earth rotates about it. The (X, Y ) plane of the geocentric-equatorial reference
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frame is the earth’s equatorial plane, simply called the equator. The Z-axis is along the
earth’s polar axis of rotation. The X-axis is pointing toward the vernal equinox, the
point in the sky where the sun crosses the equator from south to north on the first day
of spring. The vernal equinox direction is often denoted by the symbol Υ.

The six orbital elements consist of five independent quantities, which are sufficient
to completely describe the size, shape, and orientation of an orbit, and one quantity
required to pinpoint the position of a satellite along the orbit at any particular time.
The six classical orbital elements are:

a = the semimajor axis

e = the eccentricity

i = the inclination of the orbit plane

Ω = the right ascension of the ascending node

ω = the argument of the perigee

M = the mean anomaly

A traditional set of the six classical orbital elements includes the perigee passage time,
tp, instead of the mean anomaly, M .

The elements a and e determine the size and shape of the elliptic orbit, respectively,
and tp or M relates position in orbit to time. The angles Ω and i specify the orientation
of the orbit plane with respect to the geocentric-equatorial reference frame. The angle
ω specifies the orientation of the orbit in its plane. Orbits with i < 90 deg are called
prograde orbits, while orbits with i > 90 deg are called retrograde orbits. The term
prograde means the easterly direction in which the sun, earth, and most of the planets
and their moons rotate on their axes. The term retrograde means westerly direction,
which is simply the opposite of prograde. An orbit whose inclination is near 90 deg is
called a polar orbit. An equatorial orbit has zero inclination.

The line of nodes does not exist for equatorial orbits with zero inclination and also
the line of apsides does not exist for circular orbits with zero eccentricity. Because a set
of orbit equations with such classical orbital elements has a singularity problem when
e = 0 or sin i = 0, we often employ the so-called equinoctial orbital elements defined in
terms of the classical orbital elements, as follows [16]:

a = a

P1 = e sin(Ω + ω)

P2 = e cos(Ω + ω)

Q1 = tan(i/2) sin Ω

Q2 = tan(i/2) cos Ω

` = Ω + ω +M

where ` is called the mean longitude.
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Figure 2.4: Perifocal reference frame.

2.1.3 Orbital Position and Velocity

Given the geocentric-equatorial (X, Y, Z) reference frame with basis vectors {~I, ~J, ~K}
and a perifocal (x, y, z) reference frame with basis vectors {~i,~j,~k}, the position vector
is represented as

~r = X~I + Y ~J + Z ~K = x~i+ y~j + z~k (29)

The position vector ~r can also be expressed as

~r = X ′~I ′ + Y ′ ~J ′ + Z ′ ~K ′ = X ′′~I ′′ + Y ′′ ~J ′′ + Z ′′ ~K ′′ (30)

where (X ′, Y ′, Z ′) and (X ′′, Y ′′, Z ′′) are the components of the position vector ~r in two

intermediate reference frames with basis vectors {~I ′, ~J ′, ~K ′} and {~I ′′, ~J ′′, ~K ′′}, respec-
tively.

The perifocal reference frame is then related to the geocentric-equatorial reference
frame through three successive rotations as follows:

~I ′

~J ′

~K ′

 =

 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1



~I
~J
~K

 (31a)


~I ′′

~J ′′

~K ′′

 =

 1 0 0
0 cos i sin i
0 − sin i cos i



~I ′

~J ′

~K ′

 (31b)


~i
~j
~k

 =

 cosω sinω 0
− sinω cosω 0

0 0 1



~I ′′

~J ′′

~K ′′

 (31c)

40



The orbital elements Ω, i, and ω are in fact the Euler angles of the so-called C3(ω) ←
C1(i)← C3(Ω) rotational sequence.

By combining the sequence of rotations above, we obtain
~i
~j
~k

 =

 cosω sinω 0
− sinω cosω 0

0 0 1


 1 0 0

0 cos i sin i
0 − sin i cos i


 cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1



~I
~J
~K


which becomes 

~i
~j
~k

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33



~I
~J
~K

 (32)

where

C11 = cos Ω cosω − sin Ω sinω cos i

C12 = sin Ω cosω + cos Ω sinω cos i

C13 = sinω sin i

C21 = − cos Ω sinω − sin Ω cosω cos i

C22 = − sin Ω sinω + cos Ω cosω cos i

C23 = cosω sin i

C31 = sin Ω sin i

C32 = − cos Ω sin i

C33 = cos i

The matrix C = [Cij] is called the direction cosine matrix which describes the orientation
of the perifocal reference frame with respect to the geocentric-equatorial reference frame.

The components (x, y, z) of the position vector in the perifocal reference frame
are then related to the components (X, Y, Z) of the position vector in the geocentric-
equatorial reference frame via the same direction cosine matrix C as: x

y
z

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 X
Y
Z

 (33)

Since the direction cosine matrix C is an orthonormal matrix, i.e., C−1 = CT , we also
have  X

Y
Z

 =

 C11 C21 C31

C12 C22 C32

C13 C23 C33


 x
y
z

 (34)

The components of the velocity vector represented as

~v = Ẋ~I + Ẏ ~J + Ż ~K = ẋ~i+ ẏ~j + ż~k (35)
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are also related as  ẋ
ẏ
ż

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 Ẋ

Ẏ

Ż

 (36)

or  Ẋ

Ẏ

Ż

 =

 C11 C21 C31

C12 C22 C32

C13 C23 C33


 ẋ
ẏ
ż

 (37)

Using the following relationships

 x
y
z

 =

 r cos θ
r sin θ

0

 and

 ẋ
ẏ
ż

 =


−
√
µ/p sin θ√

µ/p(e+ cos θ)

0

 (38)

where p = a(1− e2) is the parameter, we also obtain X
Y
Z

 =

 C11 C21 C31

C12 C22 C32

C13 C23 C33


 r cos θ
r sin θ

0

 (39)

 Ẋ

Ẏ

Ż

 =

 C11 C21 C31

C12 C22 C32

C13 C23 C33



−
√
µ/p sin θ√

µ/p(e+ cos θ)

0

 (40)

2.1.4 Geosynchronous Orbits

If the period of a satellite in a circular prograde equatorial orbit is exactly one siderial
day (23 h 56 min 4 s), it will appear to hover motionlessly over a point on the equator.
Such a satellite, located at 42,164 km (≈ 6.6R⊕) from the earth center (or at an altitude
of 35,786 km), is called a geostationary satellite. A satellite with the orbital period of
one siderial day but with a non-zero inclination is called a geosynchronous satellite. Its
ground track is often characterized by a “figure-eight” curve. Note that regardless of
the satellite’s orbital inclination, geosynchronous satellites still take 23 hr 56 min 4 s to
make one complete revolution around the earth.

2.2 Orbital Perturbations

Thus far in this chapter, we have considered two bodies whose relative motion is de-
scribed by an ideal or Keplerian orbit in which the plane of the orbit is fixed in inertial
space. The Keplerian orbit is a consequence of the assumptions that the primary body
has a spherically symmetric mass distribution, the second body is a particle, and the
only forces exerted on the two bodies are those of mutual gravitational attraction. In
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general, however, the mass of the primary body is distributed aspherically; the two
bodies are subject to the gravitational attraction of other bodies, and to other pertur-
bational forces. As a result, the orbit of the two bodies is non-Keplerian, and the plane
of the orbit does not remain fixed in inertial space. The small deviations from the ideal
Keplerian orbital motion are often called orbital perturbations. This section presents a
non-Keplerian orbit model of satellites influenced by the earth’s oblateness and triaxi-
ality, gravitational perturbations from the Sun and Moon, and solar radiation pressure
force.

2.2.1 Non-Keplerian Orbit Dynamics

Consider the general equation of motion of a satellite about the earth described by

~̈r +
µ

r3
~r = ~f (41)

where ~r is the position vector of the satellite from the center of the earth, ~̈r indicates the
second derivative of ~r with respect to time in an inertial reference frame, µ ≈ µ⊕, and
~f , called the perturbing acceleration, represents the resultant perturbing force per unit
mass acting on the satellite, added to the negative of the resultant perturbing force per
unit mass acting on the earth. The position of a satellite acted upon by the perturbing
acceleration is often referred to a plane containing ~r and ~̇r, called the osculating orbital
plane.

Taking the dot product of Eq. (41) with ~̇r yields

~̈r · ~̇r +
µ

r3
~r · ~̇r = ~f · ~̇r (42)

which is rewritten as
d

dt

(
v2

2
− µ

r

)
= ~f · ~̇r (43)

Substituting the specific energy E defined as

E =
v2

2
− µ

r
= − µ

2a

into Eq. (43), we obtain

ȧ =
2a2

µ
~f · ~̇r (44)

Note that E is not a constant unless ~f = 0 or ~f · ~̇r = 0.
Taking the cross product of Eq. (41) with ~r, we have

~r × ~̈r = ~r × ~f (45)
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Differentiating the specific angular momentum defined as

~h = ~r × ~̇r (46)

we obtain
~̇h = ~r × ~̈r = ~r × ~f (47)

Note that ~h is not a constant vector unless ~f = 0 or ~r × ~f = 0.
Taking the post-cross product of Eq. (41) with ~h, we have

~̈r × ~h+
µ

r3
~r × ~h = ~f × ~h (48)

which is rewritten as
d

dt
(~̇r × ~h− µ

r
~r) = ~̇r × ~̇h+ ~f × ~h (49)

Substituting the eccentricity vector ~e defined as

µ~e = ~̇r × ~h− µ

r
~r (50)

and Eq. (47) into Eq. (49), we obtain

µ~̇e = ~̇r × (~r × ~f) + ~f × ~h (51)

Here, ~e is not a constant vector unless the right-hand side of Eq. (51) is zero.
Let ~er, ~eθ, and ~ez be unit vectors along the radial vector direction, the transverse

orbit direction, and the direction normal to the orbit plane, respectively, such that
~er × ~eθ = ~ez. Then the perturbing acceleration ~f and the velocity vector ~v ≡ ~̇r are
represented in terms of the unit vectors {~er, ~eθ, ~ez}, as follows:

~f = fr~er + fθ~eθ + fz~ez (52)

~v = vr~er + vθ~eθ + vz~ez (53)

We also have

vr ≡ ṙ =

√
µ

p
e sin θ (54)

vθ ≡ rθ̇ =

√
µ

p
(1 + e cos θ) (55)

and vz = 0 due to the assumptions of the osculating orbit. Consequently, the term ~f · ~̇r
in Eq. (44) becomes

~f · ~̇r = frvr + fθvθ (56)

and we obtain

ȧ =
2a2

√
µp
{fre sin θ + fθ(1 + e cos θ)} (57)
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Differentiating the specific angular momentum vector expressed as

~h =
√
µp ~k (58)

where ~k (= ~ez) is a unit vector normal to the orbit plane, we obtain

~̇h =
1

2

√
µ

p
ṗ~k +

√
µp ~̇k (59)

Furthermore, we have

~̇k = (Ω̇ ~K + i̇~I ′ + ω̇~k)× ~k
= Ω̇ sin i~I ′′ − i̇ ~J ′′ (60)

where ~I ′′ is a unit vector toward the ascending node and ~J ′′ is orthogonal to ~I ′′ (see
Figure 2.3). Thus, we have

~̇h =
1

2

√
µ

p
ṗ~k +

√
µp(Ω̇ sin i~I ′′ − i̇ ~J ′′) (61)

The term ~r × ~f in Eq. (47) is also written as

~r × ~f = rfθ~k − rfz~eθ (62)

In terms of unit vectors ~I ′′, ~J ′′, and ~k, this equation becomes

~r × ~f = rfθ~k − rfz[− sin(ω + θ)~I ′′ + cos(ω + θ) ~J ′′] (63)

Since ~̇h = ~r × ~f , equating the coefficients of Eqs. (61) and (63) gives

ṗ = 2

√
p

µ
rfθ (64)

Ω̇ sin i =
rfz√
µp

sin(ω + θ) (65)

i̇ =
rfz√
µp

cos(ω + θ) (66)

Differentiating the relation, p = a(1− e2), gives

ė =
1

2ea
[ȧ(1− e2)− ṗ] (67)

Combining this equation with Eqs. (57) and (64) and using the following relationships

p = a(1− e2)

r = a(1− e cosE)
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we obtain

ė =

√
p

µ
[fr sin θ + fθ(cos θ + cosE)] (68)

Similar to the preceding derivation of ė, the rotation of the major axis can also be
obtained as

ω̇ + Ω̇ cos i =
1

e

√
p

µ
[−fr cos θ + fθ(1 + r/p) sin θ] (69)

Since the mean anomaly is defined as M = E − e sinE, we obtain

Ṁ = Ė − ė sinE − eĖ cosE (70)

and Ė may be found by differentiating r = a(1− e cosE), as follows:

Ė =
ṙ − ȧ(1− e cosE) + aė cosE

ae sinE
(71)

where ṙ =
√
µ/p e sin θ. Combining these relationships and using

cosE =
e+ cos θ

1 + e cos θ

sinE =

√
1− e2 sin θ

1 + e cos θ

we obtain

Ṁ = n− 2rfr
na2

+
1− e2

nae
[fr cos θ − fθ(1 + r/p) sin θ] (72)

In summary, we have the so-called Gauss form of Lagrange’s planetary equations as

ȧ =
2a2

√
µp

[fre sin θ + fθ(1 + e cos θ)] (73)

ė =

√
p

µ

[
fr sin θ + fθ

(
cos θ +

e+ cos θ

1 + e cos θ

)]
(74)

i̇ =
rfz cos(ω + θ)√

µp
(75)

Ω̇ =
rfz sin(ω + θ)√

µp sin i
(76)

ω̇ = −fzr sin(ω + θ) cos i√
µp sin i

− 1

e

√
p

µ
[fr cos θ − fθ(1 + r/p) sin θ] (77)

Ṁ = n− 2rfr
na2

+
1− e2

nae
[fr cos θ − fθ(1 + r/p) sin θ] (78)

where p = a(1− e2), n =
√
µ/a3, and r = p/(1 + e cos θ).
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Because this set of equations has a singularity problem when e = 0 and/or sin i = 0,
another set of equations that are free of singularities is often considered by employing a
set of the so-called equinoctial orbital elements defined in terms of the classical orbital
elements, as follows [16]:

a = a

P1 = e sin(Ω + ω)

P2 = e cos(Ω + ω)

Q1 = tan(i/2) sin Ω

Q2 = tan(i/2) cos Ω

` = Ω + ω +M

where ` is called the mean longitude.
Furthermore, using the true longitude and eccentric longitude defined, respectively,

as

L = Ω + ω + θ (79)

K = Ω + ω + E (80)

we rewrite Kepler’s orbit equation, r = a(1− cosE), as

r = a(1− P1 sinK − P2 cosK) (81)

and Kepler’s time equation, M = E − e sinE, as

` = K + P1 cosK − P2 sinK (82)

The true longitude, L, can be obtained from the eccentric longitude,K, using the fol-
lowing relationships [16]:

sinL =
a

r

[(
1− a

a+ b
P 2

2

)
sinK +

a

a+ b
P1P2 cosK − P1

]
(83)

cosL =
a

r

[(
1− a

a+ b
P 2

1

)
cosK +

a

a+ b
P1P2 sinK − P2

]
(84)

where
a

a+ b
=

1

1 +
√

1− e2
=

1√
1− P 2

1 − P 2
2

From Battin [16], we have Gauss’ variational equations in terms of the equinoctial ele-
ments, as

ȧ =
2a2

h

[
(P2 sinL− P1 cosL)fr +

p

r
fθ

]
(85)
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Ṗ1 =
r

h

{
−p
r

cosL fr +
[
P1 +

(
1 +

p

r

)
sinL

]
fθ − P2(Q1 cosL−Q2 sinL)fz

}
(86)

Ṗ2 =
r

h

{
p

r
sinL fr +

[
P2 +

(
1 +

p

r

)
cosL

]
fθ + P1(Q1 cosL−Q2 sinL)fz

}
(87)

Q̇1 =
r

2h
(1 +Q2

1 +Q2
2) sinL fz (88)

Q̇2 =
r

2h
(1 +Q2

1 +Q2
2) cosL fz (89)

˙̀ = n− r

h

{[
a

a+ b

(
p

r

)
(P1 sinL+ P2 cosL) +

2b

a

]
fr (90)

+
a

a+ b

(
1 +

p

r

)
(P1 cosL− P2 sinL)fθ + (Q1 cosL−Q2 sinL)fz

}
(91)

where

b = a
√

1− P 2
1 − P 2

2

h = nab
p

r
= 1 + P1 sinL+ P2 cosL

r

h
=

h

µ(1 + P1 sinL+ P2 cosL)

By defining

~r = X~I + Y ~J + Z ~K
~f = FX~I + FY ~J + FZ ~K

where (X, Y, Z) are the so-called ECI coordinates, we also obtain the orbital dynamic
equations of the following simple form:

Ẍ = − µX
r3

+ FX (92a)

Ÿ = − µY
r3

+ FY (92b)

Z̈ = − µZ
r3

+ FZ (92c)

where r =
√
X2 + Y 2 + Z2.

2.2.2 Asphericity

The earth is not a perfect sphere; it more closely resembles an oblate spheroid, a body
of revolution flattened at the poles. At a finer level of detail the earth can be thought
of as pear shaped, but the orbital motion of geosynchronous spacecraft can be analyzed
adequately by accounting for the mass distribution associated with the polar flattening
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and ignoring the pear shape. The equatorial bulge caused by the polar flattening is
only about 21 km; however, this bulge continuously distorts the path of a satellite.
The attractive force from the bulge shifts the satellite path northward as the satellite
approaches the equatorial plane from the south. As the satellite leaves the equatorial
plane, the path is shifted southward. The net result is the ascending node shifts or
regresses; it moves westward when the satellite’s orbit is prograde, and eastward for
a retrograde orbit. In this section, we analyze the effects of the earth’s oblateness,
characterized by the gravitational coefficient J2, on the precession of the node line and
the regression of the apsidal line of satellite’s orbits.

The equatorial cross-section of the earth is elliptical rather than circular, with a 65
m deviation from circular; thus, an oblate spheroid (with a circular cross section at the
equator) is a less precise representation of the earth than an ellipsoid with axes of three
distinct lengths. When modeling the earth as an ellipsoid, one therefore refers to its
triaxiality. The tesseral gravitational harmonic coefficient J22 of the earth is related
to the ellipticity of the earth’s equator. There are four equilibrium points separated by
approximately 90 deg along the equator: two stable points and two unstable points. The
effect of the triaxiality is to cause geosynchronous satellites to oscillate about the nearest
stable point on the minor axis. These two stable points, at 75◦ E longitude and 255◦ E
longitude, are called gravitational valleys. A geosynchronous satellite at the bottom of
a gravitational valley is in stable equilibrium. Satellites placed at other longitudes will
drift with a 5-year period of oscillation; thus, they require “east-west” stationkeeping
maneuvers to maintain their orbital positions. The stable equilibrium points are used
among other things as a “junk-yard” for deactivated geosynchronous satellites.

2.2.3 Earth’s Anisotropic Gravitational Potential

As discussed in Section 2.2.2, the earth’s shape is better represented by an ellipsoid
than a sphere, and its mass distribution is not that of a uniform sphere. To account
for the nonuniform mass distribution and the resulting nonuniformity in the earth’s
gravitational field, a gravitational potential is given in general terms by a series of
spherical harmonics,

U⊕(r, φ, λ) =
µ

r

{
1 +

∞∑
n=2

n∑
m=0

(
R⊕
r

)n
Pnm(sinφ)[Cnm cosmλ+ Snm sinmλ]

}
(93)

where the point of interest is described by its geocentric distance r, geocentric latitude φ,
and geographic longitude λ measured eastward from the Greenwich meridian, and where
R⊕ is the mean equatorial radius of the earth, µ = µ⊕ is the gravitational parameter
of the earth, Cnm and Snm are the tesseral (n 6= m), sectoral (n = m), and zonal
(m = 0) harmonic coefficients characterizing the earth’s mass distribution, and Pnm is
the associated Legendre function of degree n and order m.
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The perturbing gravitational potential, U , such that ~f = (1 +m2/m1)∇U≈ ∇U
becomes the perturbation acceleration, is then defined as

U = U⊕ −
µ

r

=
µ

r

∞∑
n=2

n∑
m=0

(
R⊕
r

)n
Pnm(sinφ)[Cnm cosmλ+ Snm sinmλ] (94)

By separating the terms independent of longitude, we find

U =
µ

r

{
−
∞∑
n=2

Jn

(
R⊕
r

)n
Pn(sinφ)

+
∞∑
n=2

n∑
m=1

Jnm

(
R⊕
r

)n
Pnm(sinφ)[cosm(λ− λnm)]

}
(95)

where the zonal harmonic coefficient, Jn, is often defined as Jn ≡ −Cn0 (e.g., J2 =
+1082.63× 10−6), Pn is Legendre polynomial of degree n defined as Pn ≡ Pn0, and

Jnm =
√
C2
nm + S2

nm

λnm =
1

m
tan−1

(
Snm
Cnm

)
P1(sinφ) = sinφ

P2(sinφ) = (3sin2φ− 1)/2

P3(sinφ) = (5sin3φ− 3 sinφ)/2

P4(sinφ) = (35sin4φ− 30 sin2 φ+ 3)/8

P11(sinφ) = (1− sin2 φ)1/2

P21(sinφ) = 3 sinφ(1− sin2 φ)1/2

P22(sinφ) = 3(1− sin2 φ)

P31(sinφ) = 3(1− sin2 φ)1/2(5 sin2 φ− 1)/2

P32(sinφ) = 15(1− sin2 φ) sinφ

P33(sinφ) = 15(1− sin2 φ)3/2

Note that Pn and Pnm can be determined from the following formulas:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

Pnm(x) =
(1− x2)m/2

2nn!

dn+m

dxn+m
(x2 − 1)n

A set of numerical values for the coefficients and constants in Eq. (93) is known as a
gravitational model. The Goddard Earth Model (GEM) T1 is reported by Marsh et al.
[21], with R⊕ = 6,378.137 km, and µ⊕ = 398,600.436 km3/s2. The normalized values of
gravitational coefficients in Ref. [21] have been unnormalized into the following values
for Jr and Crs, and used to calculate other parameters, Jrs and λrs:
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Equator
Earth Center

X

Z
( X , Y ,  Z  )

 

φ

r

Geodetic Altitude

Geocentric Distance

Geocentric
Latitude

North Pole

J2 = 1082.63E-6 J3 = −2.5326E-6 J4 = −1.6162E-6 J5 = −0.22812E-6
C21 = 0 S21 = 0 C22 = 1.57432E-6 S22 = −0.903593E-6
C31 = 2.192406E-6 S31 = 0.269593E-6 C32 = 0.30862E-6 S32 = −0.211914E-6
C33 = 0.100537E-6 S33 = 0.197057E-6
J22 = 1.81520E-6 J31 = 2.20892E-6 J32 = 0.37437E-6 J33 = 0.22122E-6
λ22 = −0.26052 λ31 = 0.12235 λ32 = −0.30085 λ33 = 0.366343

2.2.4 Earth’s Oblateness

The effects of the earth’s oblateness on the precession of the node line and the regression
of the apsidal line of satellite’s orbits can now be analyzed considering the perturbing
gravitational potential of the oblate earth given by

U =
µ

r

{
−J2R

2
⊕

2r2
(3sin2φ− 1)− J3R

3
⊕

2r3
(5sin3φ− 3 sinφ)− · · ·

}
(96)

where r, φ, R⊕, µ, J2, and J3 have the same meanings and numerical values as given in
Sec. 2.2.3.

As illustrated in Figure 2.5, the angle between the equatorial plane and the radius
from the geocenter is called geocentric latitude, while the angle between the equatorial
plane and the normal to the surface of the ellipsoid is called geodetic latitude. The
commonly used geodetic altitude is also illustrated in Figure 2.5.

Figure 2.5: A two-dimensional view of the oblate earth.

Ignoring higher-order terms, we consider the perturbing gravitational potential due
to J2, as follows:

U =
µJ2R

2
⊕

2r3
(1− 3sin2φ) (97)
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Since the geocentric latitude φ is related to the orbital elements as:

sinφ =
Z

r
=
r sin(ω + θ) sin i

r
= sin(ω + θ) sin i (98)

Eq. (97) is rewritten as

U =
µJ2R

2
⊕

2

{
1

r3
− 3sin2i sin2(ω + θ)

r3

}
(99)

Noting that ~r = r~er and dz = r sin(ω+ θ)di, we can express the perturbing acceleration
as

~f = ∇U =
∂U

∂r
~er +

1

r

∂U

∂θ
~eθ +

1

r sin(ω + θ)

∂U

∂i
~ez (100)

Taking the partial derivatives of U with respect to r, θ, and i, and substituting them
into Eq. (100), we obtain the radial, transverse, and normal components of ~f , as follows;

fr = −3µJ2R
2
⊕

2r4
{1− 3sin2i sin2(ω + θ)} (101)

fθ = −3µJ2R
2
⊕

2r4
sin2i sin 2(ω + θ) (102)

fz = −3µJ2R
2
⊕

2r4
sin 2i sin(ω + θ) (103)

Substituting Eq. (103) into Eq. (65), we obtain the precession of the node line as:

Ω̇ = −3µJ2R
2
⊕

r3√µp cos i sin2(ω + θ) (104)

Integrating this equation over an entire orbit of period P yields

∆Ω = −3µJ2R
2
⊕√

µp
cos i

∫ P

0

sin2(ω + θ)

r3
dt (105)

where ∆Ω denotes the change of Ω over an entire orbit, assuming that changes in other
orbital elements are second-order terms. (Note that the average rate of change of i over
the orbital period is zero.)

Since the angular momentum h ≡ |~h| can be expressed as

h =
√
µp ≈ r2(Ω̇ cos i+ ω̇ + θ̇) (106)

we have

ω̇ + θ̇ ≈
√
µp

r2
(107)
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in which the second-order term Ω̇ cos i is further neglected. This equation is used to
change the independent variable t into (ω + θ), as follows:

d(ω + θ) =

√
µp

r2
dt

Thus, Eq. (105) can be rewritten as

∆Ω = −3J2R
2
⊕

p
cos i

∫ 2π

0

sin2(ω + θ)

r
d(ω + θ)

= −3J2R
2
⊕

p
cos i

∫ 2π

0

1− cos 2(ω + θ)

2r
d(ω + θ)

Performing the integration after a substitution of r = p/(1 + e cos θ) yields

∆Ω = −3πJ2R
2
⊕

p2
cos i+ higher-order terms (108)

Dividing this by the average orbital period, P = 2π/n, where n =
√
µ/a3 is the orbital

mean motion, we obtain the average rate of change of Ω, as follows:

Ω̇ ≈ −3J2R
2
⊕

2p2
n cos i (109)

Similarly, assuming that the eccentricity and the semimajor axis of the orbit remain
unperturbed by the oblateness of the earth to a first-order approximation, we can obtain
the average rate of change of ω, as follows:

ω̇ ≈ −3J2R
2
⊕

2p2
n

(
5sin2i

2
− 2

)
(110)

For geostationary satellites, we have ∆Ω ≈ −4.9 deg/year and ∆ω ≈ 9.8 deg/year due
to the oblateness of the earth.

2.2.5 Earth’s Triaxiality

The earth’s ellipsoidal shape, or triaxiality, was discussed in Section 2.2.2, where it is
noted that the equatorial cross-section is elliptical with one axis 65 m longer than the
other. The elliptical nature of the equator is characterized by the tesseral harmonic
coefficients C22, S22, C32, S32, etc. The primary tesseral harmonic is denoted by J22,
which combines C22 and S22, as

J22 =
√
C2

22 + S2
22

The earth’s elliptical equator gives rise to a gravitational acceleration that causes a drift
in the longitudinal position of geostationary satellites, which is a major perturbation
that must be dealt with.
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There are four equilibrium points separated by approximately 90 deg along the equa-
tor: two stable points and two unstable points. The effect of the triaxiality is to cause
geosynchronous satellites to oscillate about the nearest stable point on the minor axis.
These two stable points, at 75◦ E longitude and 255◦ E longitude, are called gravitational
valleys. A geosynchronous satellite at the bottom of a gravitational valley is in stable
equilibrium. Satellites placed at other longitudes will drift with a 5-year period of oscil-
lation; thus, they require “east-west” stationkeeping maneuvers to maintain their orbital
positions. The stable equilibrium points are used among other things as a “junk-yard”
for deactivated geosynchronous satellites.

Ignoring higher-order terms, the perturbing gravitational potential due to tesseral
harmonics C22 and S22 is defined as

U =
3µR2

⊕
r3

(C22 cos 2λ+ S22 sin 2λ) cos2 φ

≡ 3µR2
⊕

r3

√
C2

22 + S2
22 cos 2(λ− λ22) cos2 φ

≡ 3µR2
⊕

r3
J22 cos 2(λ− λ22) cos2 φ (111)

where r is the geocentric distance, λ is the geographic longitude, φ is the geocentric
latitude, C22 = 1.574321 × 10−6, S22 = −0.903593 × 10−6, J22 = 1.815204 × 10−6, and
λ22 is defined as

λ22 =
1

2
tan−1

(
S22

C22

)
= −0.26052 rad = −15 deg

Using the following relationships

X = r cosφ cosλ

Y = r cosφ sinλ

Z = r sinφ

we obtain

U =
3µR2

⊕
r5

[C22(X2 − Y 2) + 2S22XY ] (112)

and

~f = ∇U =
3µR2

⊕
r6

[−5{C22(X2 − Y 2) + 2S22XY }~er
+2r(C22X + S22Y )~e1 + 2r(S22X − C22Y )~e2]

≡ fr~er + fθ~eθ + fz~k (113)

where mutually perpendicular unit vectors ~e1 and ~e2 are fixed in the earth: ~e1 lies
in the equatorial plane parallel to a line intersecting earth’s geometric center and the
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Greenwich meridian, and ~e2 lies in the equatorial plane 90 deg eastward of ~e1. Note that
in Eqs. (112) and (113), X, Y , and Z mark the position of the satellite in an earth-fixed
coordinate system; they do not have the same meanings as in Eq. (29).

The radial, transverse, and normal components of ~f can then be found as

fr = −9µR2
⊕

r4
(C22 cos 2λ+ S22 sin 2λ) cos2 φ

fθ = −6µR2
⊕

r4
(C22 sin 2λ− S22 cos 2λ) cosφ (114)

fz = −6µR2
⊕

r4
(C22 cos 2λ+ S22 sin 2λ) sinφ cosφ

For a geosynchronous satellite with i ≈ 0 and r = a (i.e., φ = 0), we have

fr = −9µR2
⊕

a4
(C22 cos 2λ+ S22 sin 2λ)

fθ = −6µR2
⊕

a4
(C22 sin 2λ− S22 cos 2λ) (115)

fz = 0

Using
da

dt
=

2

n
fθ where n =

√
µ/a3 (116)

we can express the longitudinal perturbation acceleration as

λ̈ =
dn

dt
= −3n

2a

da

dt
= −3n

2a

2

n
fθ = −3

a
fθ (117)

and we find

λ̈ =
18µR2

⊕
a5

(C22 sin 2λ− S22 cos 2λ)

=
18µR2

⊕
a5

J22 sin 2(λ− λ22) (118)

where λ22 = −0.26052 rad = −15 deg. The equilibrium longitudes, denoted as λ∗, for
λ̈ = 0 can be found as:

tan 2λ∗ =
S22

C22

=
−0.90359× 10−6

1.57432× 10−6
= −0.57395

⇒ λ∗ = 75, 165, 255, 345 deg

and λ22 corresponds to λ∗ of 345 deg. It can be shown that λ∗ of 75 deg and 255
deg are stable equilibrium longitudes and that λ∗ of 165 deg and 345 deg are unstable
equilibrium longitudes.
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Since the stable equilibrium points are separated by ±90 deg from λ22, we obtain
the following:

λ̈ =
18µR2

⊕
a5

J22 sin 2(λ− λ22)

=
18µR2

⊕
a5

J22 sin 2(λ− (λs ± π/2))

= −18µR2
⊕

a5
J22 sin 2(λ− λs)

= −0.0017 sin 2(λ− λs) deg/day2 (119)

where λs = 75.3 and 255.3 deg (stable longitudes).

2.2.6 Luni-Solar Gravitational Perturbations

The gravitational forces exerted by the Sun and Moon on the two bodies of interest, the
earth and a geostationary satellite, are referred to as the luni-solar perturbation. The
equation describing motion of a satellite subject to perturbations is given by

~̈r +
µ⊕
r3
~r = ~f (120)

where ~f is the perturbing acceleration caused, in this case, by the luni-solar gravitational
effects on the satellite and earth, described by

~f = −µ⊗
~r⊗
r3
⊗

+
~Q

Q3

− µ¯
~r¯
r3
¯

+
~R

R3

 (121)

and

~r = position vector of satellite from the earth

≡ ~Q+ ~r⊗ for the earth-moon-satellite system

≡ ~R + ~r¯ for the earth-sun-satellite system
~Q = position vector of the moon from the earth, Q = 3.84398× 108 m
~R = position vector of the sun from the earth, R = 1AU = 1.496× 1011 m

~r⊗ = position vector of satellite from the moon

~r¯ = position vector of satellite from the sun

µ⊕ = the earth’s gravitational parameter = 398, 601 km3/s2

µ⊗ = the moon’s gravitational parameter = 4, 902.8 km3/s2

µ¯ = the sun’s gravitational parameter = 1.32686× 1011 km3/s2
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Defining

~r = X~I + Y ~J + Z ~K
~Q = QX

~I +QY
~J +QZ

~K
~R = RX

~I +RY
~J +RZ

~K
~f = FX~I + FY ~J + FZ ~K

where (X, Y, Z) are the ECI coordinates, we can obtain the components of the luni-solar
perturbation vector, as follows:

FX ≈
µ⊗
Q3

{
−X +

3r

Q

[
cos θ⊗ +

r

2Q
(5 cos2 θ⊗ − 1)

]
(QX −X)

}

+
µ¯
R3

{
−X +

3r

R

[
cos θ¯ +

r

2R
(5 cos2 θ¯ − 1)

]
(RX −X)

}
(122)

FY ≈
µ⊗
Q3

{
−Y +

3r

Q

[
cos θ⊗ +

r

2Q
(5 cos2 θ⊗ − 1)

]
(QY − Y )

}

+
µ¯
R3

{
−Y +

3r

R

[
cos θ¯ +

r

2R
(5 cos2 θ¯ − 1)

]
(RY − Y )

}
(123)

FZ ≈
µ⊗
Q3

{
−Z +

3r

Q

[
cos θ⊗ +

r

2Q
(5 cos2 θ⊗ − 1)

]
(QZ − Z)

}

+
µ¯
R3

{
−Z +

3r

R

[
cos θ¯ +

r

2R
(5 cos2 θ¯ − 1)

]
(RZ − Z)

}
(124)

where θ⊗ is the angle between the earth-satellite line and the earth-moon line, θ¯ is the
angle between the earth-satellite line and the earth-sun line, and

QX = Q(cos Ω⊗ cosω⊗t− sin Ω⊗ cos i⊗ sinω⊗t)

QY = Q(sin Ω⊗ cosω⊗t+ cos Ω⊗ cos i⊗ sinω⊗t)

QZ = Q sin i⊗ sinω⊗t

RX = R(cos Ω¯ cosω¯t− sin Ω¯ cos i¯ sinω¯t)

RY = R(sin Ω¯ cosω¯t+ cos Ω¯ cos i¯ sinω¯t)

RZ = R sin i¯ sinω¯t

ω⊗ = orbit rate of the moon = 2π/27.3 rad/day

Ω⊗ = the right ascension of the moon

i⊗ = the inclination angle of the moon

ω¯ = orbit rate of the sun = 2π/365.25 rad/day

Ω¯ = the right ascension of the Sun

i¯ = the declination angle of the Sun
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The luni-solar gravitational perturbations for typical geosynchronous communica-
tions satellites with i ≈ 0 are summarized by Agrawal [22], as follows:

Lunar gravitational perturbation < 9× 10−6 m/s2

Solar gravitational perturbation < 4× 10−6 m/s2

di

dt
≈ 3µ⊗r

2

4hr3
⊗

sin(Ω− Ω⊗) sin i⊗ cos i⊗ +
3µ�r

2

4hr3
�

sin Ω sin i� cos i�

≈ 0.478 to 0.674 deg/year + 0.269 deg/year

where Ω is chosen as 90 deg, Ω⊗ = 0 for min/max i⊗, and

µ⊗ = 4.9028× 103 km3/s2

µ� = 1.32686× 1011 km3/s2

r⊗ ≈ 3.844× 105 km

r� ≈ 1.49592× 108 km

i⊗ = 18.3◦ to 28.6◦

i� = 23.45◦

r = 42, 164 km

h = 129, 640 km2/s

2.2.7 Solar Radiation Pressure

The significant orbital perturbation effect of the solar pressure force on large spacecraft
with large area-to-mass ratios has been investigated by many researchers in the past,
[10]-[15]. A detailed physical description of the solar radiation pressure can be found in
a recent book on solar sailing by McInnes [14]. The solar pressure effects on formation
flying of satellites with different area-to-mass ratios were also recently investigated in
Ref. [15].

The solar radiation forces are due to photons impinging on a surface in space, as
illustrated in Figure 2.6. It is assumed that a fraction, ρs, of the impinging photons is
specularly reflected, a fraction, ρd, is diffusely reflected, and a fraction, ρa, is absorbed
by the surface. And we have

ρs + ρd + ρa = 1 (125)

The solar radiation pressure (SRP) force acting on a flat surface is then expressed as

�F = PA(�n · �s)
{
(ρa + ρd)�s+

(
2ρs(�n · �s) +

2

3
ρd

)
�n

}
(126)

where P = 4.5 × 10−6 N/m2 is the nominal solar radiation pressure constant, A is the
surface area, �n is a unit vector normal to the surface, and �s is a unit vector pointing
from the sun to satellite.
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Figure 2.6: Solar radiation pressure force acting on an ideal flat surface (a case with
45-deg pitch angle φ is shown here).

For an ideal case of a perfect mirror with ρd = ρa = 0 and ρs = 1, we have �Ft = 0
and

�F = �Fn = 2PAcos2φ �n

Also for an ideal case of a black body with ρs = ρd = 0 and ρa = 1, we have

�F = P (A cosφ) �s

where A cosφ is called the projected area of the surface under consideration.
For most practical cases of satellites with small pitch angles, the SRP perturbation

force per unit mass is simply modeled as

�f = P (1 + ρ)(A/m)�s (127)

where ρ is the overall surface reflectance (0 for a black body and 1 for a mirror) and
A/m is the area-to-mass ratio.

Defining �f = fr�er + fθ�eθ + fz�ez and ignoring the effects of seasonal variations of the
sun vector, we have

fr ≈ f sin θ

fθ ≈ f cos θ

where f = P (1 + ρ)(A/m).
From the orbit perturbation analysis, we have

da

dt
=

2

n
√

1− e2
{fre sin θ + fθ(1 + e cos θ)}

de

dt
=

√
1− e2
na

{fr sin θ + fθ(cos θ + cosE)}
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For geosynchronous satellites with e ≈ 0, we obtain

da

dt
=

2

n
fθ =

2f

n
sin θ

⇒ ∆a = 0 per day (128)

and

de

dt
=

1

na
(fr sin θ + 2fθ cos θ)

=
1

na
(f sin2 θ + 2f cos2 θ)

=
f

na

(
3

2
+

1

2
cos 2θ

)
⇒ ∆e ≈ 3πf

n2a
per day (129)

The solar radiation pressure effect on the longitude change can also be found as

λ̈ =
dn

dt
= −3n

2a

da

dt
= −3n

2a

2

n
fθ = −3

a
fθ

= −3f

a
cos θ (130)

2.2.8 Orbit Simulation Results

Orbit simulation results for the Abacus satellite with the effects of the earth’s oblateness
and triaxiality, luni-solar perturbations, and 60-N solar pressure force are shown in
Figures 2.7 and 2.8. The significance of the orbital perturbation effects on the eccentricity
and inclination can be seen in these figures.

Orbit control simulation results with the effects of earth’s oblateness and triaxiality,
luni-solar perturbations, 60-N solar pressure force, and simultaneous orbit and attitude
control thruster firings are shown in Figures 2.9 and 2.10. In Figure 2.9, FZ is the
orbit inclination control force and FX is the solar pressure countering force resulting
from countering the pitch gravity-gradient torque. It can be seen that the inclination,
eccentricity, satellite longitude location, and the Z-axis orbital position are all properly
maintained. The feasibility of using continuous (non-impulsive) firings of ion thrusters
for simultaneous eccentricity and inclination control is demonstrated.

The initial values used in the simulations correspond to a circular, equatorial orbit
of radius 42164.169 km; therefore, the initial orbital elements are

a = 42164.169 km

e = 0

i = 0 deg

Ω = 0 deg

ω = 0 deg
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The epoch used to calculate the solar and lunar positions, as well as the Earth’s orien-
tation in inertial space, is March 21, 2000. In order to place the spacecraft at an initial
terrestrial longitude of 75.07 deg (one of the stable longitudes), a true anomaly θ of
253.89 deg is used.

These elements correspond to an initial position and velocity of

~r = −11698.237 ~I − 40508.869 ~J + 0 ~K km

~v = 2.954 ~I − 0.853 ~J + 0 ~K km/s

The orbit control problem of geosynchronous satellites is a topic of continuing prac-
tical interest. Detailed technical descriptions of standard north-south and east-west
stationkeeping control techniques as well as more advanced orbit control concepts can
be found in Refs. [11]-[13] and [18]-[20].

In the next section, we develop an attitude dynamics model of sun-pointing spacecraft
in geosynchronous orbit for attitude control systems architecture design.
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Figure 2.7: Orbit simulation results with the effects of the earth’s oblateness and triax-
iality, luni-solar perturbations, and 60-N solar pressure force.
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Figure 2.8: Orbit simulation results with the effects of the earth’s oblateness and triax-
iality, luni-solar perturbations, and 60-N solar pressure force (continued).

63



0 5 10 15 20 25 30
4.2162

4.2164

4.2166

4.2168
x 10

4

a 
(k

m
)

0 5 10 15 20 25 30
0

0.5

1

1.5
x 10

-4

e

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10

-3

i (
de

g)

0 5 10 15 20 25 30
-100

-50

0

50

100

Ω
 (

de
g)

0 5 10 15 20 25 30
-10

-5

0

5
x 10

-15

ω
 (

de
g)

0 5 10 15 20 25 30
-200

-100

0

100

200

Number of orbits

M
 (

de
g)

Figure 2.9: Orbit control simulation results with continuous (non-impulsive) eccentricity
and inclination control.
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Figure 2.10: Orbit control simulation results with continuous (non-impulsive) eccentric-
ity and inclination control (continued).
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2.3 Rigid-Body Attitude Equations of Motion

Consider a rigid body in a circular orbit. A local vertical and local horizontal (LVLH)
reference frame A with its origin at the center of mass of an orbiting spacecraft has a
set of unit vectors {~a1,~a2,~a3} with ~a1 along the orbit direction, ~a2 perpendicular to the
orbit plane, and ~a3 toward the earth, as illustrated in Figure 2.11. The angular velocity
of A with respect to an inertial or Newtonian reference frame N is

~ωA/N = −n~a2 (131)

where n is the constant orbital rate. The angular velocity of the body-fixed reference
frame B with basis vectors {~b1,~b2,~b3} is then given by

~ωB/N = ~ωB/A + ~ωA/N = ~ωB/A − n~a2 (132)

where ~ωB/A is the angular velocity of B relative to A.

Figure 2.11: A large space solar power satellite in geosynchronous orbit.

The orientation of the body-fixed reference frame B with respect to the LVLH ref-
erence frame A is in general described by the direction cosine matrix C as follows:

~b1

~b2

~b3

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 ~a1

~a2

~a3

 (133)
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or  ~a1

~a2

~a3

 =

 C11 C21 C31

C12 C22 C32

C13 C23 C33



~b1

~b2

~b3

 (134)

When earth is modeled as a sphere with uniform mass distribution, the gravitational
force acting on a small mass element with a mass of dm is given by

d~f = −µ
~Rdm

|~R|3
= −µ(~Rc + ~ρ)dm

|~Rc + ~ρ|3
(135)

where µ is the gravitational parameter of the earth, ~R and ~ρ are the position vectors
of the small mass element from the earth’s center and the spacecraft’s mass center,
respectively, and ~Rc is the position vector of the spacecraft’s mass center from the
earth’s center.

The gravity-gradient torque about the spacecraft’s mass center is then expressed as:

~M =
∫
~ρ× d~f = −µ

∫ ~ρ× ~Rc

|~Rc + ~ρ|3
dm (136)

and we have the following approximation

|~Rc + ~ρ|−3 = R−3
c

1 +
2(~Rc · ~ρ)

R2
c

+
ρ2

R2
c


−3/2

= Rc
−3

1− 3(~Rc · ~ρ)

R2
c

+ higher-order terms

 (137)

where Rc = |~Rc| and ρ = |~ρ|. By definition of the mass center,
∫
~ρdm = ~0; therefore, the

gravity-gradient torque neglecting the higher-order terms can be written as

~M =
3µ

R5
c

∫
(~Rc · ~ρ)(~ρ× ~Rc)dm (138)

This equation is further manipulated as follows:

~M = −3µ

R5
c

~Rc ×
∫
~ρ(~ρ · ~Rc)dm

= −3µ

R5
c

~Rc ×
∫
~ρ~ρdm · ~Rc

= −3µ

R5
c

~Rc × [
∫
ρ2Îdm− Ĵ ] · ~Rc

= −3µ

R5
c

~Rc ×
∫
ρ2Îdm · ~Rc +

3µ

R5
c

~Rc × Ĵ · ~Rc

=
3µ

R5
c

~Rc × Ĵ · ~Rc
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since Ĵ =
∫

(ρ2Î − ~ρ~ρ)dm and ~Rc × Î · ~Rc = ~Rc × ~Rc = 0. The inertia dyadic of the
spacecraft with respect to its mass center is denoted by Ĵ , and Î represents the unit
dyadic.

Finally, the gravity-gradient torque is expressed in vector-dyadic form [17], [23] as:

~M = 3n2~a3 × Ĵ · ~a3 (139)

where n =
√
µ/R3

c is the orbital rate and ~a3 ≡ −~Rc/Rc.

In addition to the contribution to gravitational force (see Sec. 2.2.4), earth’s oblate-
ness makes a contribution to gravity-gradient torque, shown in Ref. [23] to have a coeffi-
cient of 3µJ2R

2
⊕/R

5
c . By comparing this to the coefficient above, 3µ/R3

c , it is seen that at
geosynchronous orbit the contribution of J2 to gravity-gradient torque is approximately
5 orders of magnitude less than the main term.

The rotational equation of motion of a rigid body with an angular momentum ~H =
Ĵ · ~ωB/N in a circular orbit is then given by{

d ~H

dt

}
N

≡
{
d ~H

dt

}
B

+ ~ωB/N × ~H = ~M

where {d/dt}N indicates differentiation with respect to time in reference frame N , and
{d/dt}B indicates differentiation with respect to time in reference frame B. The rela-
tionship can be rewritten as

Ĵ · ~̇ω + ~ω × Ĵ · ~ω = 3n2~a3 × Ĵ · ~a3 (140)

where ~ω ≡ ~ωB/N , and note that ~̇ω = {d~ω/dt}N ≡ {d~ω/dt}B.
Since ~ω, ~a3, and Ĵ can be expressed in terms of basis vectors of the body-fixed

reference frame B as

~ω = ω1
~b1 + ω2

~b2 + ω3
~b3 (141)

~a3 = C13
~b1 + C23

~b2 + C33
~b3 (142)

Ĵ =
3∑
i=1

3∑
j=1

Jij~bi~bj

the nonlinear equations of motion in matrix form become J11 J12 J13

J21 J22 J23

J31 J32 J33


 ω̇1

ω̇2

ω̇3

+

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 J11 J12 J13

J21 J22 J23

J31 J32 J33


 ω1

ω2

ω3



= 3n2

 0 −C33 C23

C33 0 −C13

−C23 C13 0


 J11 J12 J13

J21 J22 J23

J31 J32 J33


 C13

C23

C33
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To describe the orientation of the body-fixed reference frame B with respect to the
LVLH reference frame A in terms of three Euler angles θi (i = 1, 2, 3), consider the
sequence of C1(θ1) ← C3(θ3) ← C2(θ2) from the LVLH reference frame A to a body-
fixed reference frame B. For this rotational sequence, we have

~b1

~b2

~b3

 =

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 ~a1

~a2

~a3



=

 c θ2 c θ3 s θ3 − s θ2 c θ3

− c θ1 c θ2 s θ3 + s θ1 s θ2 c θ1 c θ3 c θ1 s θ2 s θ3 + s θ1 c θ2

s θ1 c θ2 s θ3 + c θ1 s θ2 − s θ1 c θ3 − s θ1 s θ2 s θ3 + c θ1 c θ2


 ~a1

~a2

~a3


where c θi = cos θi and s θi = sin θi.

And also we have the following kinematic differential equations: θ̇1

θ̇2

θ̇3

 =
1

cos θ3

 cos θ3 − cos θ1 sin θ3 sin θ1 sin θ3

0 cos θ1 − sin θ1

0 sin θ1 cos θ3 cos θ1 cos θ3


 ω1

ω2

ω3

+

 0
n
0

 (143)

The dynamical equations of motion about the body-fixed principal axes become

J1ω̇1 − (J2 − J3)ω2ω3 = −3n2(J2 − J3)C23C33 (144)

J2ω̇2 − (J3 − J1)ω3ω1 = −3n2(J3 − J1)C33C13 (145)

J3ω̇3 − (J1 − J2)ω1ω2 = −3n2(J1 − J2)C13C23 (146)

where

C13 = − sin θ2 cos θ3

C23 = cos θ1 sin θ2 sin θ3 + sin θ1 cos θ2

C33 = − sin θ1 sin θ2 sin θ3 + cos θ1 cos θ2

for the sequence of C1(θ1)← C3(θ3)← C2(θ2).
One may linearize Eqs. (143)–(146) “about” an LVLH orientation while admitting a

large pitch angle as follows. Assume θ1 and θ3 remain small, allow θ2 to be large, assume
ω1 and ω3 are small, and ω2 is equal to the sum of a small quantity and −n. Equations
that are linear in the small quantities are

J1θ̈1 + (1 + 3cos2θ2)n2(J2 − J3)θ1 − n(J1 − J2 + J3)θ̇3

+ 3(J2 − J3)n2(sin θ2 cos θ2)θ3 = u1 + d1

J2θ̈2 + 3n2(J1 − J3) sin θ2 cos θ2 = u2 + d2

J3θ̈3 + (1 + 3sin2θ2)n2(J2 − J1)θ3 + n(J1 − J2 + J3)θ̇1

+ 3(J2 − J1)n2(sin θ2 cos θ2)θ1 = u3 + d3
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where ui and di are control and disturbance torques, respectively.
For a quasi-inertially stabilized, sun-pointing SSP satellite in geosynchronous orbit

with small body rates, ωi (i = 1, 2, 3), and small roll/yaw angles, θ1 and θ3, the kinematic
differential equations, (143), can be linearized in the small quantities:

θ̇1 ≈ ω1

θ̇2 ≈ ω2 + n

θ̇3 ≈ ω3

Finally, the equations of motion of a sun-pointing spacecraft with small roll and yaw
angles can be found as

J1θ̈1 = − 3n2(J2 − J3)(cos2θ2)θ1 − 3(J2 − J3)n2(sin θ2 cos θ2)θ3 + u1 + d1 (147a)

J2θ̈2 = − 3n2(J1 − J3) sin θ2 cos θ2 + u2 + d2 (147b)

J3θ̈3 = − 3n2(J2 − J1)(sin2θ2)θ3 − 3(J2 − J1)n2(sin θ2 cos θ2)θ1 + u3 + d3 (147c)

The pitch angle relative to LVLH, θ2, is not restricted to be small, but it may be
regarded as a sum, θ2 = nt+ δθ2, where δθ2 is a small pitch attitude error. Kinematical
and dynamical differential equations can then be made linear in the small quantities ω1,
ω2, ω3, θ1, δθ2, and θ3. For such a case, Eqs. (143) become

θ̇1 ≈ ω1

δθ̇2 ≈ ω2

θ̇3 ≈ ω3

and Eqs. (147) become

J1θ̈1 = − 3n2(J2 − J3)[(cos2nt)θ1 + (sinnt cosnt)θ3] + u1 + d1 (148a)

J2 δθ̈2 = − 3n2(J1 − J3)[(cos2 nt− sin2 nt)δθ2 + sinnt cosnt] + u2 + d2 (148b)

J3θ̈3 = − 3n2(J2 − J1)[(sin2nt)θ3 + (sinnt cosnt)θ1] + u3 + d3 (148c)

where (θ1, δθ2, θ3) are the small roll, pitch, and yaw attitude errors of a sun-pointing
spacecraft, respectively.

Equations (147) or (148) are the attitude equations of motion of the Abacus satellite
for control design in the presence of the external disturbances, di, in units of N-m,
modeled as:

d1 ≈ 12, 000− 11, 900 cosnt

d2 ≈ 1, 200

d3 ≈ −11, 900 sinnt

However, ±20% uncertainties in this disturbance model as well as the inertia properties
should be considered in control design.
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2.4 Abacus Satellite Structural Models

In Refs. [24]-[26], dynamics and control problems of large flexible platforms in space,
such as the square Abacus platform, have been investigated. The flexible structure
dynamics and control problem is a topic of continuing practical as well as theoretical
interest. However, a significant control-structure interaction problem, possible for such
very large Abacus platform (3.2 km by 3.2 km) with the lowest structural mode frequency
of about 0.002 Hz, is avoided simply by designing an attitude control system with very
low bandwidth (< orbit frequency of 1×10−5 Hz). The proposed low-bandwidth attitude
control system, however, utilizes a concept of cyclic-disturbance accommodation control
to provide ±5 arcmin pointing of the Abacus platform in the presence of large external
disturbances and dynamic modeling uncertainties. Consequently, the flexible structure
control problem is not further investigated in this study, while a structural dynamic
interaction problem with thermal distortion needs to be investigated in a future study.

Various structural concepts for providing the required stiffness and rigidity of the
Abacus platform are illustrated in Figure 2.12. Finite-element modeling of the baseline
Abacus platform is illustrated in Figure 2.13 and the first three vibration modes are
shown in Figure 2.14. Selected node locations for control analysis and design are shown
in Figure 2.15. Typical pole-zero patterns of reduced-order transfer functions can be
seen in Figure 2.16. Computer simulation results of a reduced-order structural model
with the lowest 16 modes, confirm that the control-structure interaction problem can
be simply avoided by the low-bandwidth attitude control system. Detailed technical
discussions of the dynamics and control problems of flexible spacecraft can be found in
the literature (e.g., see Refs. [17] and [27]), and thus the structural control problem of
the Abacus satellite is not elaborated in this report.
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ABACUS SUPPORT STRUCTURE CONFIGURATIONS

Tetrahedral
Support Truss

Planar Array
(Built-Up Truss Beams)

Prismatic Support Truss
(modified configuration)

Built-Up
Truss Beams

Built-Up
Truss Beams

Figure 2.12: Abacus structural platform concepts (Courtesy of Tim Collins at NASA
LaRC).
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MODIFIED ABACUS CONFIGURATION
FINITE ELEMENT MODEL

Reflector (500m x 750m)Transmitter
(500m diameter)

3200m  (80 arrays)

Single Arrays
40m x 200m

(80 Array Repeating Unit)

800 m

(1
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 a
rr

ay
s)

1280 Arrays
(total)

Built-Up Truss
Beams (varying

configurations and
stiffness)

Square arrangement helps eliminate ÒweakÓ stiffness direction.

Figure 2.13: Baseline Abacus finite element model (Courtesy of Tim Collins at NASA
LaRC).
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Planar Configuration, Thin Wall Struts
(Free-Free Vibration Modes)

Mode 1,
.0018 Hz

Mode 2,
.0026 Hz

Mode 3,
.0037 Hz

Figure 2.14: Baseline Abacus vibration modes (Courtesy of Tim Collins at NASA LaRC).
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Reflector (500m x 750m)Transmitter
(500m diameter)

3200m   (80 arrays)
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Node Number Locations for Normal Modes Results

Front View (Abaqus support truss in back)

1117

469

1

1377

729

325

1217

549

125

(Nine Nodes Shown in Red)

Figure 2.15: Selected FEM node locations for control analysis and design (Courtesy of
Tim Collins at NASA LaRC).
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Figure 2.16: Bode magnitude plots of reduced-order transfer functions from an input
force at node #1 to various output locations.
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Chapter 3

Development of Abacus Control
Systems Architecture

3.1 Introduction to Control Systems Design

This section provides a summary of the basic definitions and fundamentals in control
systems design. It also provides the necessary background material for developing a
control systems architecture for the Abacus satellite. Further detailed discussions of
classical and modern control theory as applied to spacecraft control systems design can
be found in Wie [17].

3.1.1 Feedback Control Systems

Block diagram representations of a feedback control system are shown in Figure 3.1.
Figure 3.1(a) is called a functional block diagram representation. Any physical system
to be controlled is often called a plant. A set of differential or difference equations used to
describe a physical system is called a mathematical model of the system. In the analysis
and design of a feedback control system, we often deal with a mathematical model of
the plant, not with the actual physical plant. Consequently, special care must be taken
about uncertainties in the mathematical model because no mathematical model of a
physical system is exact.

A closed-loop feedback control system maintains a specified relationship between the
actual output and the desired output (or the reference input) by using the difference of
these, called the error signal. A control system in which the output has no effect on the
control decision is called an open-loop control system. In a feedback control system, a
controller, also called compensator or control logic, is to be designed to manipulate or
process the error signal in order that certain specifications be satisfied in the presence
of plant disturbances and sensor noise. In the analysis of control systems, we analyze
the dynamical behavior or characteristics of the system under consideration. In the
design or synthesis, we are concerned with designing a feedback control system so that
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Compensator Actuator Plant

Sensor

+

-

Disturbance

Noise

OutputReference
Input

(a)

+

-
K(s)

e(t)r(t)
G(s)

u(t) y(t)

Compensator Plant

+

+

+

+

d(t)

n(t)
(b)

+

+

w(t)

Figure 3.1: Block diagram representations of a feedback control system.

it achieves the desired system characteristics.
A feedback control system can also be represented as in Figure 3.1(b) using transfer

functions. In this figure, for simplicity, the actuator and sensor dynamics are neglected,
and r(t) denotes the reference input, y(t) the plant output, G(s) the plant transfer
function, K(s) the compensator, u(t) the control input, e(t) the error signal, w(t) the
disturbance, d(t) the output disturbance, and n(t) a sensor noise.

The output of this closed-loop system, neglecting the sensor noise n(t), can then be
represented as

y(s) =
K(s)G(s)

1 +K(s)G(s)
r(s) +

G(s)

1 +K(s)G(s)
w(s) +

1

1 +K(s)G(s)
d(s) (1)

where y(s) = L[y(t)], r(s) = L[r(t)], w(s) = L[w(t)], and d(s) = L[d(t)]. In particular,
the closed-loop transfer functions from d(s) and r(s) to y(s) are

y(s)

d(s)
=

1

1 +K(s)G(s)
= S(s) (2)

y(s)

r(s)
=

K(s)G(s)

1 +K(s)G(s)
= T (s) (3)
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and S(s) and T (s) are called the sensitivity function and the complementary sensitivity
function, respectively. Furthermore, we have the following relationship:

S(s) + T (s) = 1 (4)

The closed-loop characteristic equation is defined as

1 +K(s)G(s) = 0 (5)

and K(s)G(s) is called the loop transfer function. It is also called the open-loop transfer
function in the literature. The importance of the loop transfer function cannot be
overemphasized because it is used extensively in the analysis and design of closed-loop
systems. The roots of the closed-loop characteristic equation are called the closed-loop
poles.

The error signal, ignoring the sensor noise n(t), is defined as

e(t) = r(t)− y(t) (6)

and the steady-state error can be found as

ess = lim
t→∞

e(t) = lim
s→0

se(s) (7)

where e(s) = L[e(t)], provided that e(t) has a final value. For the system shown in
Figure 3.1, ignoring w(s) and d(s), we have

e(s) =
1

1 +K(s)G(s)
r(s) (8)

and

ess = lim
s→0

sr(s)

1 +K(s)G(s)
(9)

Thus, it is required that
lim
s→0

K(s)G(s) =∞ (10)

to have zero steady-state tracking error for a constant reference input command.
A feedback control system is often characterized by its system type. The system type

is defined as the number of poles of the loop transfer function K(s)G(s) at the origin.
Therefore, a type 1 system has zero steady-state error for a constant reference input, a
type 2 system has zero steady-state error for a constant or ramp reference input, and so
forth.

In order to reduce the effects of the disturbance, the magnitude of the loop transfer
function K(s)G(s) must be large over the frequency band of the disturbance d(t). For
good command following at any frequency, the steady-state or D.C. gain must be large.
In general, a fast transient response, good tracking accuracy, good disturbance rejection,
and good sensitivity require a high loop gain over a wide band of frequencies. Because
the high loop gain may degrade the overall system stability margins, proper tradeoffs
between performance and stability are always necessary in practical control designs.
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3.1.2 Classical Frequency-Domain Methods

Root Locus Method

One of classical control analysis and design techniques is the root locus method developed
by Evans in 1950. In Evans’ root locus method, the closed-loop characteristic equation
is described by

1 +KG(s) = 0 (11)

where KG(s) denotes the loop transfer function, G(s) includes both the compensator
transfer function and the plant transfer function, and K is called the overall loop gain.
Note that the roots of the closed-loop characteristic equation are called the closed-loop
poles.

In Evans’ root locus plot, the poles and zeros of the loop transfer function KG(s)
are shown, where the poles are represented as cross, ×, and zeros as circle, ◦. A root
locus is then simply a plot of the closed-loop poles as the overall loop gain K is usually
varied from 0 to ∞.

Using a root locus plot, one can easily determine a gain margin which is one of the
most important measures of the relative stability of a feedback control system. A gain
margin indicates how much the loop gain K can be increased or decreased from its chosen
nominal value until the closed-loop system becomes unstable. For example, if the loop
gain K can be increased by a factor of 2 until a root locus crosses the imaginary axis
toward the right-half s plane, then the gain margin becomes 20 log 2 ≈ +6 dB. In some
cases of an open-loop unstable system, the closed-loop system may become unstable if
the loop gain is decreased from its chosen nominal value. For example, if the gain can
be decreased by a factor of 0.707 until the closed-loop system becomes unstable, then
the (negative) gain margin is 20 log 0.707 ≈ −3 dB. The root locus method also allows
the designer to properly select at least some of the closed-loop pole locations and thus
control the transient response characteristics.

Frequency-Response Methods

Frequency-response analysis and synthesis methods are among the most commonly used
techniques for feedback control system analysis and design, and they are based on the
concept of frequency-response function.

The frequency-response function is defined by the transfer function evaluated at s =
jω; that is, the frequency response function of a transfer function G(s) is given by

G(s)|s=jω = G(jω) = Re[G(jω)] + j Im[G(jω)] = |G(jω)|ejφ(ω) (12)

where |G(jω)| and φ(ω) denote, respectively, the magnitude and phase of G(jω) defined
as

|G(jω)| =
√
{Re[G(jω)]}2 + {Im[G(jω)]}2

φ(ω) = tan−1 Im[G(jω)]

Re[G(jω)]
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For a given value of ω, G(jω) is a complex number. Thus, the frequency-response
function G(jω) is a complex function of ω. Mathematically, the frequency response
function is a mapping from the s plane to the G(jω) plane. The upper half of the
jω-axis, which is a straight line, is mapped into the complex plane via mapping G(jω).

One common method of displaying the frequency-response function is a polar plot
(also called a Nyquist plot) where the magnitude and phase angle of G(jω), or its real
and imaginary parts, are plotted in a plane as the frequency ω is varied. Another
form of displaying G(jω) is to plot the magnitude of G(jω) versus ω and to plot the
phase angle of G(jω) versus ω. In a Bode plot, the magnitude and phase angle are
plotted with frequency on a logarithmic scale. Also, we often plot the magnitude of the
frequency-response function in decibels (dB); that is, we plot 20 log |G(jω)|. A plot of
the logarithmic magnitude in dB versus the phase angle for a frequency range of interest
is called a Nichols plot.

For a feedback control system shown in Figure 3.1, the loop transfer function,
K(s)G(s) evaluated at s = jω, is used extensively in the analysis and design of the
system using frequency-response methods. The closed-loop frequency response func-
tions defined as

y(jω)

d(jω)
= S(jω) =

1

1 +K(jω)G(jω)
(13)

y(jω)

r(jω)
= T (jω) =

K(jω)G(jω)

1 +K(jω)G(jω)
(14)

are also used in classical frequency-domain control systems design.
One of the most important measures of the relative stability of a feedback control

system is the gain and phase margins as defined as follows.

Gain Margin. Given the loop transfer function K(s)G(s) of a feedback control
system, the gain margin is defined to be the reciprocal of the magnitude |K(jω)G(jω)|
at the phase-crossover frequency at which the phase angle φ(ω) is −180 deg; that is, the
gain margin, denoted by gm, is defined as

gm =
1

|K(jωc)G(jωc)|
(15)

or
gm = −20 log |K(jωc)G(jωc)| dB (16)

where ωc is the phase-crossover frequency. For a stable minimum-phase system, the
gain margin indicates how much the gain can be increased before the closed-loop system
becomes unstable.

Phase Margin. The phase margin is the amount of additional phase lag at the
gain-crossover frequency ωc at which |K(jωc)G(jωc)| = 1 required to make the system
unstable; that is,

φm = φ[K(jωc)G(jωc)] + 180◦ (17)
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Although the gain and phase margins may be obtained directly from a Nyquist plot,
they can also be determined from a Bode plot or a Nichols plot of the loop transfer
function K(jω)G(jω).

3.1.3 Classical PID Control Design

The PID (proportional-integral-derivative) control logic is commonly used in most feed-
back controllers. To illustrate the basic concept of the PID control, consider a cart of
mass m on a frictionless horizontal surface, as shown in Figure 3.2(a). This so-called
double integrator plant is described by

mÿ(t) = u(t) + w(t) (18)

where y is the output displacement of the cart, u is the input force acting on the cart,
and w is a disturbance force. This system with a rigid-body mode is unstable, thus the
system needs to be stabilized and the desired output is assumed to be zero.

Assuming that the position and velocity of the system can be directly measured,
consider a direct velocity and position feedback control logic expressed as:

u(t) = −ky(t)− cẏ(t) (19)

or
u = −(k + cs)y

where k and c are controller gains to be determined. The closed-loop system illustrated
by Figure 3.2(b) is then described by

mÿ(t) + cẏ(t) + ky(t) = w(t)

which is, in fact, a mathematical representation of a mass-spring-damper system forced
by an external disturbance w(t), as illustrated in Figure Figure 3.2(c).

The closed-loop characteristic equation of the system shown in Figure 3.2 is

ms2 + cs+ k = 0

The control design task is to tune the “active damper” and “active spring” to meet
given performance/stability specifications of the closed-loop system. Let ωn and ζ be
the desired natural frequency and damping ratio of the closed-loop poles. Then the
desired closed-loop characteristic equation becomes

s2 + 2ζωns+ ω2
n = 0

and the controller gains c and k can be determined as

c = 2mζωn (20a)

k = mω2
n (20b)
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Figure 3.2: Control of a double integrator plant by direct velocity and position feedback.
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The damping ratio ζ is often selected as: 0.5 ≤ ζ ≤ 0.707, and the natural frequency
ωn is then considered as the bandwidth of the PD controller of a system with a rigid-
body mode. For a unit-step disturbance, this closed-loop system with the PD controller
results in a nonzero steady-state output y(∞) = 1/k. However, the steady-state output
error y(∞) can be made small by designing a high-bandwidth control system.

Consider the control problem of a double integrator plant with measurement of po-
sition only. A common method of stabilizing the double integrator plant with noisy
position measurement is to employ a phase-lead compensator of the form:

u(s) = −KT1s+ 1

T2s+ 1
y(s)

as illustrated in Figure 3.3(a). An equivalent closed-loop system can be represented
using two springs and a damper as in Figure 3.3(b) and that

K = k1; T1 =
c(k1 + k2)

k1k2

; T2 =
c

k2

For further details of designing a passive three-parameter isolator known as the D-
StrutTM that can be modeled as Figure 3.3(b), see Davis, L. P., Cunningham, D., and
Harrell, J., “Advanced 1.5 Hz Passive Viscous Isolation System,” Proceedings of AIAA
Structures, Structural Dynamics, and Materials Conference, AIAA, Washington, DC,
April 1994.

In order to keep the cart at the desired position y = 0 at steady state in the presence
of a constant disturbance, consider a PID controller of the form:

u(t) = −KPy(t)−KI

∫
y(t)dt−KDẏ(t) (21)

or

u(s) = −[KP +
KI

s
+KDs] y(s)

In practical analog circuit implementation of a PID controller when ẏ is not directly
measured, differentiation is always preceded by a lowpass filter to reduce noise effects.
It can be shown that for a constant disturbance, the closed-loop system with the PID
controller, in fact, results in a zero steady-state output y(∞) = 0.

The closed-loop characteristic equation can be found as

ms3 +KDs
2 +KP s+KI = 0

and let the desired closed-loop characteristic equation be expressed as

(s2 + 2ζωns+ ω2
n)(s+ 1/T ) = 0

where ωn and ζ denote, respectively, the natural frequency and damping ratio of the
complex poles associated with the rigid-body mode and T is the time constant of the
real pole associated with integral control.
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Figure 3.3: Control of a double integrator plant using a phase-lead compensator.
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The PID controller gains can then be determined as

KP = m(ω2
n +

2ζωn
T

) (22a)

KI = m
ω2
n

T
(22b)

KD = m(2ζωn +
1

T
) (22c)

The time constant T of integral control is often selected as

T ≈ 10

ζωn

3.1.4 Digital PID Controller

Consider a continuous-time PID controller represented as

u(t) = −KPy(t)−KI

∫
y(t)dt−KDẏ(t)

Using Euler’s approximation of differentiation:

s ≈ 1− z−1

T
=
z − 1

Tz
(23)

we obtain an equivalent digital PID controller represented in z-domain transfer function
form as:

u = −
{
KP +KI

T

1− z−1
+KD

1− z−1

T

}
y (24)

This digital PID control logic can be implemented in a computer as follows:

u(k) = −KPy(k)−KI û(k)−KD
y(k)− y(k − 1)

T
(25)

where
û(k) = û(k − 1) + Ty(k)

A single-axis block diagram representation of a digital control system of the Hubble
Space Telescope is shown in Figure 3.4. As can be seen in this figure, the baseline digital
control system of the Hubble Space Telescope, with a sampling period T = 0.025 sec
and a computational delay of Td = 0.008 sec, is in fact a digital PID controller with a
finite impulse response (FIR) filter in the rate loop.
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3.1.5 Classical Gain-Phase Stabilization

In the preceding sections, we have introduced the fundamentals of classical control. In
this section, we present a classical gain-phase stabilization approach to compensator
design, in particular, for a flexible spacecraft which has a rigid-body mode and lightly
damped, oscillatory flexible modes. The approach allows the control designer to properly
gain-phase stabilize each mode, one-by-one, resulting in a meaningful control design with
physical insight. The classical gain-phase stabilization method is primarily restricted to
the single-input single-output control problems, however.

The classical concepts of gain-phase stabilization of a rigid-body and flexible modes
can be summarized briefly as follows:

1) Gain stabilization of a flexible mode provides attenuation of the control loop gain
at the desired frequency to ensure stability regardless of the control loop phase
uncertainty. A lightly damped, flexible mode is said to be gain stabilized if it is
closed-loop stable for the selected loop gain, but it becomes unstable if the loop
gain is raised or its passive damping reduced. Hence, a gain stabilized mode has a
finite gain margin, but is closed-loop stable regardless of the phase uncertainty.

2) Phase stabilization of a flexible mode provides the proper phase characteristics at
the desired frequency to obtain a closed-loop damping that is greater than the
passive damping of the mode. A lightly damped, flexible mode is said to be phase
stabilized if it is closed-loop stable for arbitrarily small passive damping. Hence, a
phase stabilized mode has a finite phase margin, but is closed-loop stable regardless
of the loop gain uncertainty.

3) A rigid-body or flexible mode is said to be gain-phase stabilized if it is closed-loop
stable with finite gain and phase margins.

When an actuator and a sensor are “colocated” on flexible structures in space, the
rigid-body mode and all the flexible modes are said to be “stably interacting” with each
other. For such a colocated case, position feedback with a phase-lead compensator or
direct rate and position feedback can be used to stabilize all the flexible and rigid-body
modes. Because all the modes are phase stabilized in this case, special care must be
taken about the phase uncertainty from the control loop time delay and actuator/sensor
dynamics. As frequency increases, the phase lag due to a time delay will eventually
exceed the maximum phase lead of 90 degrees from the direct rate feedback. Thus, roll-
off filtering (i.e., gain stabilization) of high-frequency modes is often needed to attenuate
the control loop gain at frequencies above the control bandwidth. The selection of roll-
off filter corner frequency depends on many factors. When a colocated actuator/sensor
pair is used, the corner frequency is often selected between the primary flexible modes
and the secondary flexible modes. An attempt to gain stabilize all the flexible modes
should be avoided, unless the spacecraft or structures are nearly rigid. In practice, the
actual phase uncertainty of the control loop must be taken into account for the proper
tradeoff between phase stabilization and gain stabilization.
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When an actuator and a sensor are not colocated, the rigid body mode and some
of the flexible modes are said to be “unstably interacting” with each other. Unless
gain stabilization of all the flexible modes is possible for a low-bandwidth control, a
proper combination of gain-phase stabilization is unavoidable. Gain stabilization of
an unstably interacting flexible mode can be achieved only if that mode has a certain
amount of passive damping. The larger the passive damping at a particular mode, the
more conveniently it can be gain stabilized. Usually, gain stabilization is applied in
order to stabilize high-frequency modes that have no significant effects on the overall
performance. In practice, a structure has always a certain amount of passive damping,
which allows for the convenient gain stabilization of such flexible modes.

Notch filtering is a conventional way of suppressing an unwanted oscillatory signal
in the control loop, resulting in gain stabilization of a particular flexible mode. The
use of notch filtering ensures that the specific mode is not destabilized by feedback
control; however, it does not introduce any active damping, which often results in too
much “ringing” that may not be acceptable in certain cases. In general, roll-off of
the control loop gain at frequencies above the control bandwidth is always needed to
avoid destabilizing unmodeled high-frequency modes and to attenuate high-frequency
noise, and it is often simply achieved by using a double-pole lowpass filter. To sharply
attenuate a signal at high frequencies while affecting the magnitude and phase of the
signal at low frequencies as little as possible, various high-order lowpass filters, such as
Bessel, Butterworth, Chebyshev, or elliptical filters, are also used in feedback control
systems, but mostly in open-loop signal processing. The common characteristic of these
conventional filters is that they are minimum-phase filters.

Although the last several decades have brought major developments in advanced
control theory, the most usual approach to the design of practical control systems has
been repetitive, trial-and-error synthesis using the root locus method by Evans and/or
the frequency-domain methods by Bode, Nyquist, and Nichols. Classical control designs
employ primarily a PID-type controller with notch and/or roll-off filtering. However,
such classical control designs for a certain class of dynamical systems become difficult,
especially, if a high control bandwidth is required in the presence of many closely spaced,
unstably interacting, lightly damped modes with a wide range of parameter variations.

For such case, the concept of generalized second-order filtering can be employed. The
concept is a natural extension of the classical notch and phase lead/lag filtering, and it
is based on various pole-zero patterns that can be realized from a second-order filter of
the form

s2/ω2
z + 2ζzs/ωz + 1

s2/ω2
p + 2ζps/ωp + 1

(26)

where ωz, ζz, ωp, and ζp are filter parameters to be properly selected.
For different choices of the coefficients of this second-order filter, several well-known

filters such as notch, bandpass, lowpass, highpass, phase-lead, and phase-lag filters can
be realized. In addition to these minimum-phase filters, various nonminimum-phase
filters can also be realized from this second-order filter [17].
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3.1.6 Persistent Disturbance Rejection

A classical approach to disturbance accommodating control of dynamical systems in
the presence of persistent or quasi-periodic disturbances is presented here. The method
exploits the so-called internal model principle for asymptotic disturbance rejection. The
concept of a disturbance rejection dipole is introduced from a classical control viewpoint.

After successful stabilization of the rigid-body mode as well as any other unsta-
bly interacting flexible modes, active disturbance rejection is then simply achieved by
introducing into the feedback loop a model of the disturbance. A block diagram repre-
sentation of a persistent disturbance rejection control system is shown in Figure 3.5.

It is assumed that a persistent (or quasi-periodic) disturbance is represented as

w(t) =
n∑
i=1

Ai sin(2πfit+ φi)

with unknown magnitudes Ai and phases φi but known frequencies fi. Note that if, for
example, f1 = 2f2 = · · · = nfn, then w(t) becomes a periodic disturbance.

In general, the disturbance w(t) can be described by a Laplace transformation

w(s) =
Nw(s)

Dw(s)

where Nw(s) is arbitrary as long as w(s) remains proper. The roots of Dw(s) correspond
to the frequencies at which the persistent excitation takes place. The inclusion of the
disturbance model 1/Dw inside the control loop is often referred to as the internal mod-
eling of the disturbance. In classical design, the internal disturbance model is regarded
as being part of the compensator as shown in Figure 3.5. The presence of 1/Dw in the
control loop results in the effective cancellation of the poles of w(s), provided that no
root of Dw(s) is a zero of the plant transfer function. This is shown in the following
closed-loop transfer function:

y(s) =
1/D(s)

1 +Nc(s)N(s)/Dc(s)Dw(s)D(s)
w(s)

=
Dc(s)Dw(s)

Dw(s)Dc(s)D(s) +Nc(s)N(s)

Nw(s)

Dw(s)
(27)

where we can see the cancellation of Dw(s).
The compensator can be viewed as a series of individual first-order or second-order

filters as follows:

Nc(s)

Dc(s)
=
∏
i

Nci(s)

Dci(s)

Each filter is designed to perform a specific task, like the stabilization of a particular
mode. In the same manner, a disturbance rejection filter can be designed that has a
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proper transfer function and uses the internal disturbance model 1/Dw. Thus a proper
numerator is chosen in the compensator to go with the disturbance model as shown in
Figure 3.5. The numerator is chosen to be of the same order as Dw so that there is a
zero for each pole of the disturbance model 1/Dw.

Although the asymptotic disturbance rejection based on the internal model principle
has been well known, an interesting interpretation of the concept from a classical control
viewpoint is presented here. Each pole-zero combination of the disturbance rejection
filter ∏

i

s2/ωzi
2 + 2ζzis/ωzi + 1

s2/ωpi
2 + 1

can be called a dipole, where ζzi is included for generality. The filter thus consists of
as many dipoles as there are frequency components in the persistent disturbance. The
separation between the zero and the pole is generally referred to as the strength of the
dipole. The strength of the dipole affects the settling time of the closed-loop system;
in general, the larger the separation between the pole and zero of the filter the shorter
the settling time is. This is caused by the position of the closed-loop eigenvalue corre-
sponding to the filter dipole. As the strength of the dipole is increased, this eigenvalue
is pushed farther to the left, speeding up the response time of the disturbance rejection.
However, this separation influences the gain-phase characteristics of the system, because
the dipole causes a certain amount of gain-phase changes in its neighborhood. More-
over, at frequencies higher than the dipole there is a net gain increase or reduction. The
magnitude of this gain increases with the separation between pole and zero. Therefore,
as the strength of the dipole is changed to meet a chosen settling time the compensation
must be readjusted. A compromise has to be reached often between the settling time
and the stability of the compensated system.

The internal model principle for persistent disturbance rejection is now incorporated
with the standard state-space control design problem. Active disturbance rejection for
the measured output y is to be achieved by introducing a model of the disturbance inside
the control loop, therefore using again the concept of internal modeling, as illustrated
in Figure 3.6.

For example, consider a scalar disturbance d(t) with one or more frequency compo-
nents represented as

d(t) =
∑
i

Ai sin(ωit+ φi)

with unknown magnitudes Ai and phases φi but known frequencies ωi. The disturbance
rejection filter is then described by

ẋd = Adxd + Bdy (28)
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where xd is the state vector introduced by the disturbance model and, for example,

Ad =


0 1 0 0
−ω2

1 0 0 0
0 0 0 1
0 0 −ω2

2 0

 ; Bd =


0
1
0
1


for a scalar output y(t) with d(t) of two frequency components. The disturbance rejection
filter can include as many frequency components as the given disturbance, and is driven
by the measured output y of the plant. This procedure is equivalent to the one used in
the classical approach with the disturbance model now consisting of a state-space model.

We now consider a plant described by the state-space equation:

ẋp = Apxp + Bpu + Gpw (29a)

y = Cpxp + v + d (29b)

where xp denotes the plant’s state vector, u the control input vector, w the process
noise, v the measurement noise, and d the output equivalent persistent disturbance.
Both w and v are assumed to be white noise processes with

E[w(t)wT (τ)] = Wδ(t− τ)

E[v(t)vT (τ)] = Vδ(t− τ)

where W and V are the corresponding spectral density matrices.
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In general, a compensator designed for this plant will consist of a regulator and an
estimator which will approximate the states xp with estimated states x̂p using the infor-
mation from the measured output y. The estimator which attempts to asymptotically
reduce the error term e = xp − x̂p is given by

˙̂xp = Apx̂p + Bpu + L(y −Cpx̂p)

= (Ap − LCp)x̂p + Bpu + Ly (30)

where the term (y−Cpx̂p) represents the error between the output of the plant and the
estimated output and L is the estimator gain matrix to be determined.

The disturbance filter model described by Eq. (28) is then augmented to a plant
described by Eq. (29) as follows:

ẋ = Ax + Bu + Gw (31a)

y = Cx + v + d (31b)

where

x =

[
xp
xd

]
; A =

[
Ap 0

BdCp Ad

]
; B =

[
Bp

0

]

C =
[

Cp 0
]

; G =

[
Gp

0

]

An estimated state feedback controller is then given as

u = −Kx̂

where x̂ =
[

x̂Tp x̂Td
]T

and the gain matrix K =
[

Kp Kd

]
is to be determined for

the augmented system described by Eq. (31).
As shown in Figure 3.6, however, xd can be directly fed back as:

u = −
[

Kp Kd

] [ x̂p
xd

]
(32)

since xd is directly available from Eq. (28).
An active disturbance rejection controller in state-space form is then given by[

˙̂xp
ẋd

]
=

[
Ap −BpKp − LCp −BpKd

0 Ad

] [
x̂p
xd

]
+

[
L
Bd

]
y (33)

u = −
[

Kp Kd

] [ x̂p
xd

]
(34)

And the closed-loop system with w = v = d = 0 is described as ẋp
˙̂xp
ẋd

 =

 Ap −BpKp −BpKd

LCp Ap −BpKp − LCp −BpKd

BdCp 0 Ad


 xp

x̂p
xd
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which can be modified using the error term, e = xp−x̂p, resulting in a partially decoupled
system of equations, as follows: ẋp

ẋd
ė

 =

 Ap −BpKp −BpKd BpKp

BdCp Ad 0
0 0 Ap − LCp


 xp

xd
e


The closed-loop characteristic equation can then be written as∣∣∣∣∣∣∣

sI−Ap + BpKp BpKd −BpKp

−BdCp sI−Ad 0
0 0 sI−Ap + LCp

∣∣∣∣∣∣∣ = 0 (35)

The determinant in Eq. (35) is equal to the determinants of the diagonal submatrices
multiplied together, one giving the regulator eigenvalues for the augmented system in-
cluding the internal model, and the other giving the estimator eigenvalues for only the
plant. Hence, we have shown that the separation principle for regulator and estimator
holds for a closed-loop system even with an internal model for asymptotic disturbance
rejection.

3.1.7 Classical versus Modern Control Issues

State-space approaches to control design are currently emphasized in the literature and
more widely explored than classical methods. This arises from the convenience of obtain-
ing a compensator for the whole system given one set of design parameters (e.g., given
weighting matrices or desired closed-loop eigenvalues). In classical design, on the other
hand, a compensator must be constructed piece by piece, or mode by mode. However,
both classical and state-space methods have their drawbacks as well as advantages. All
these methods require, nevertheless, a certain amount of trial and error.

The question remains how to choose these parameters and what choice provides
the “best” optimal design. The designer must find an acceptable set of parameters for a
“good” optimal design. The use of state-space methods for control design usually results
in a compensator of the same order as the system to be controlled. This means that
for systems having several flexible modes, the compensator adds compensation even to
modes that are stable and need no compensation. This may result in a complicated
compensator design.

The classical design is particularly convenient for the control of dynamical systems
with well-separated modes. The concept of nonminimum-phase compensation also pro-
vides an extremely convenient way of stabilizing unstably interacting flexible modes.
The resulting compensator is usually of less order than the system to be controlled be-
cause not all flexible modes in a structure tend to be destabilized by a reduced-order
controller. A helpful characteristic of most flexible space structures is their inherent
passive damping. This gives the designer the opportunity of phase stabilizing significant
modes and to gain stabilize all other higher frequency modes which have less influence
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Figure 3.7: Persistent-disturbance rejection control system for the ISS.

on the structure. On the other hand, successive-mode-stabilization presents problems
of its own, and a re-tuning of the compensated system becomes necessary. It is also
noticed that reducing the damping in a frequency shaping filter reduces its influence on
neighboring frequencies and it also reduces the phase lag at lower frequencies. However,
reducing the damping of the filters increases the sensitivity of the phase stabilized modes
to plant parameter uncertainties.

Active disturbance rejection can be achieved in both the classical methods and state-
space methods, with the introduction of an internal model of the disturbance into the
feedback loop. The concept of internal modeling of the disturbance works as well with a
classical transfer function description as with a state-space description. In the classical
design, the internal modeling of the disturbance leads to the introduction of a disturbance
rejection dipole, or filter, for each frequency component of the disturbance. In the state-
space design the introduction of the internal model results in the addition of two states
for each frequency component of the disturbance.

Such a concept of persistent-disturbance rejection control has been successfully ap-
plied to the International Space Station, as illustrated in Figure 3.7. Detailed control
designs using a modern state-space control technique for the ISS, the Hubble Space
Telescope, and large flexible structures can be found in [28]-[33].
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Table 3.1: Electric propulsion systems for the 1.2-GW Abacus satellite

Thrust, T ≥ 1 N
Specific impulse, Isp = T/(ṁg) ≥ 5,000 sec
Exhaust velocity, Ve = Ispg ≥ 49 km/s
Total efficiency, η = Po/Pi ≥ 80%
Power/thrust ratio, Pi/T ≤ 30 kW/N
Mass/power ratio ≤ 5 kg/kW
Total peak thrust 200 N
Total peak power 6 MW
Total average thrust 80 N
Total average power 2.4 MW
Number of 1-N thrusters ≥ 500
Total dry mass ≥ 75,000 kg
Propellant consumption 85,000 kg/year

Note: T = ṁVe, Po = 1
2
ṁV 2

e = 1
2
TVe, Po/T = 1

2
Ve = ideal power/thrust ratio, Pi/T =

1
2η
Ve, Isp = T/(ṁg) = Ve/g, Ve = Ispg where g = 9.8 m/s2, ṁ is the exhaust mass flow

rate, Pi is the input power, and Po is the output power.

3.2 Control Systems Architecture

The area-to-mass ratio of the Abacus satellite, A/m = 0.4 m2/kg, relatively large when
compared to 0.02 m2/kg of typical geosynchronous communications satellites, is a key
parameter characterizing the very large size of the Abacus satellite. If left uncontrolled,
this can cause a cyclic drift in the longitude of the Abacus satellite of 2 deg, east and
west. Thus, in addition to standard north-south and east-west stationkeeping maneu-
vers for ±0.1 deg orbit position control, active control of the orbit eccentricity using
electric thrusters with high specific impulse, Isp, becomes mandatory. Furthermore,
continuous sun tracking of the Abacus satellite requires large control torques to counter
various disturbance torques. A control systems architecture developed in this study uti-
lizes properly distributed electric thrusters to counter, simultaneously, the cyclic pitch
gravity-gradient torque and solar radiation pressure.

Electric Propulsion Systems

Basic characteristics of electric propulsion systems for the Abacus satellite are summa-
rized in Table 3.1.

Approximately 85,000 kg of propellant per year is required for simultaneous orbit,
attitude, and structural control using 500 1-N electric propulsion thrusters with Isp =
5,000 sec. The yearly propellant requirement is reduced to 21,000 kg if an Isp of 20,000
sec can be achieved. As Isp is increased, the propellant mass decreases but the electric
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Figure 3.8: A schematic illustration of the NSTAR 2.3-kW, 30-cm diameter ion thruster
on Deep Space 1 Spacecraft (92-mN maximum thrust, specific impulse ranging from
1,900 to 3,200 sec, 25 kW/N, overall efficiency of 45–65%).

power requirement increases; consequently, the mass of solar arrays and power processing
units increases. Based on 500 1-N thrusters, a mass/power ratio of 5 kg/kW, and a
power/thrust ratio of 30 kW/N, the total dry mass (power processing units, thrusters,
tanks, feed systems, etc.) of electric propulsion systems proposed for the Abacus satellite
is estimated as 75,000 kg.

A schematic illustration of the 2.3-kW, 30-cm diameter ion engine on the Deep Space
1 spacecraft is given in Figure 3.8, which is formally known as NSTAR, for NASA Solar
electric propulsion Technology Application Readiness system. The maximum thrust
level is about 92 mN and throttling down is achieved by feeding less electricity and
xenon propellant into the propulsion system. Specific impulse ranges from 1,900 sec at
the minimum throttle level to 3,200 sec.

In principle, an electric propulsion system employs electrical energy to accelerate
ionized particles to extremely high velocities, giving a large total impulse for a small
consumption of propellant. In contrast to standard propulsion, in which the products of
chemical combustion are expelled from a rocket engine, ion propulsion is accomplished
by giving a gas, such as xenon (which is like neon or helium, but heavier), an electrical
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charge and electrically accelerating the ionized gas to a speed of about 30 km/s. When
xenon ions are emitted at such high speed as exhaust from a spacecraft, they push the
spacecraft in the opposite direction. However, the exhaust gas from an ion thruster
consists of large numbers of positive and negative ions that form an essentially neutral
plasma beam extending for large distances in space. It seems that little is known yet
about the long-term effect of such an extensive plasma on geosynchronous satellites.

Orbit, Attitude, and Structural Control System

A control systems architecture developed in this study is shown in Figure 3.9. The
proposed control systems utilize properly distributed ion thrusters to counter, simul-
taneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by
cm-cp offset and solar pressure, the cyclic roll/yaw microwave radiation torque, and the
solar pressure force whose average value is 60 N. A control-structure interaction prob-
lem of the Abacus platform with the lowest structural mode frequency of 0.002 Hz is
avoided simply by designing an attitude control system with very low bandwidth (<
orbit frequency). However, the proposed low-bandwidth attitude control system utilizes
a concept of cyclic-disturbance accommodating control to provide ±5 arcmin pointing
of the Abacus platform in the presence of large external disturbances and dynamic mod-
eling uncertainties. High-bandwidth, colocated direct velocity feedback, active dampers
may need to be properly distributed over the platform.

Placement of approximately 500 1-N electric propulsion thrusters at 12 different
locations is illustrated in Figure 3.10. In contrast to a typical placement of thrusters
at the four corners, e.g., employed for the 1979 SSPS reference system, the proposed
placement shown in Figure 3.10 minimizes roll/pitch thruster couplings as well as the
excitation of platform out-of-plane bending modes. A minimum of 500 ion engines of 1-
N thrust level are required for simultaneous attitude and stationkeeping control. When
reliability, lifetime, duty cycle, lower thrust level, and redundancy of ion engines are
considered, this number will increase significantly.

3.3 Control System Simulation Results

Computer simulation results of a case with initial attitude errors of 10 deg in the presence
various dynamic modeling uncertainties (e.g., ±20 % uncertainties in moments and
products of inertia, center-of-mass location, and principal axes, etc.), but without cyclic-
disturbance rejection control, are shown in Figures 3.11–3.15. It can be seen that the
pointing performance is not acceptable.

Control simulation results of a case with 10-deg initial attitude errors in the presence
various dynamic modeling uncertainties (e.g., ±20 % uncertainties for inertia, cm loca-
tion, and principal axes, etc.), and with additional cyclic-disturbance rejection control,
are shown in Figures 3.16–3.20. The proposed low-bandwidth attitude control system
that utilizes the concept of cyclic-disturbance accommodation control satisfies the ±5
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arcmin pointing requirement of the Abacus platform in the presence of large external
disturbances and dynamic modeling uncertainties. Proper roll/pitch thruster firings
needed for simultaneous eccentricity and roll/pitch attitude control can be seen in Fig-
ure 3.19. Nearly linear control forces are generated by on-off modulation of individual
1-N thrusters, as can be seen in this figure. The total thrusting force from the roll/pitch
thrusters #1 through #4 nearly counters the 60-N solar pressure force.
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Figure 3.11: Simulation results without cyclic-disturbance rejection control.
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Figure 3.12: Simulation results without cyclic-disturbance rejection control (continued).
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Figure 3.13: Simulation results without cyclic-disturbance rejection control (continued).
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Figure 3.14: Simulation results without cyclic-disturbance rejection control (continued).
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Figure 3.15: Simulation results without cyclic-disturbance rejection control (continued).
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Figure 3.16: Simulation results with cyclic-disturbance rejection control.
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Figure 3.17: Simulation results with cyclic-disturbance rejection control (continued).
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Figure 3.18: Simulation results with cyclic-disturbance rejection control (continued).

110



0 1 2 3 4 5 6
0

20

40

60

T
hr

us
te

r 
#1

 (
N

)

0 1 2 3 4 5 6
0

50

100

T
hr

us
te

r 
#2

 (
N

)

0 1 2 3 4 5 6
0

50

100

150

T
hr

us
te

r 
#3

 (
N

)

0 1 2 3 4 5 6
0

50

100

Time (Orbits)

T
hr

us
te

r 
#4

 (
N

)

Figure 3.19: Simulation results with cyclic-disturbance rejection control (continued).
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Figure 3.20: Simulation results with cyclic- disturbance rejection control (continued).
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Chapter 4

Conclusions and Recommendations

4.1 Summary of Study Results

The major objective of this study was to develop advanced concepts for controlling or-
bit, attitude, and structural motions of very large Space Solar Power Satellites (SSPS)
in geosynchronous orbit. This study focused on the 1.2-GW “Abacus” SSPS concept
characterized by a square (3.2 × 3.2 km) solar array platform, a 500-m diameter mi-
crowave beam transmitting antenna, and an earth-tracking reflector (500 × 700 m). For
this baseline Abacus SSPS configuration, we derived and analyzed a complete set of
mathematical models, including external disturbances such as solar radiation pressure,
microwave radiation, gravity-gradient torque, and other orbit perturbation effects. An
integrated orbit, attitude, and structural control systems architecture developed for the
Abacus satellite employs properly distributed, 500 1-N electric propulsion thrusters.

Despite the importance of the cyclic pitch gravity-gradient torque, this study shows
that the solar pressure force is considerably more detrimental to control of the Abacus
satellite (and other large SSPS) because of an area-to-mass ratio that is very large
compared to contemporary, higher-density spacecraft.

A key parameter that characterizes the sensitivity of a satellite to solar radiation
pressure is the area-to-mass ratio, A/m; the value of A/m for the Abacus satellite is 0.4
m2/kg, which is relatively large when compared to 0.02 m2/kg for typical geosynchronous
communications satellites. Solar radiation pressure causes a cyclic drift in the longitude
of the Abacus satellite of 2 deg, east and west. Consequently, in addition to standard
north/south and east/west stationkeeping maneuvers for ±0.1 deg orbit position control,
active control of the orbit eccentricity using electric thrusters becomes nearly mandatory.
Furthermore, continuous sun tracking of the Abacus platform requires large control
torques to counter various disturbance torques.

The proposed control system architecture utilizes properly distributed ion thrusters
to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll
torque caused by center of mass - center of pressure offset and solar pressure, the cyclic
roll/yaw microwave radiation torque, and the solar pressure force whose average value
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is 60 N. In contrast to a typical placement of thrusters at the four corners, e.g., em-
ployed for the 1979 SSPS reference system, the proposed placement shown in Figure
3.10 minimizes roll/pitch thruster couplings as well as the excitation of platform out-of-
plane bending modes. A control-structure interaction problem of the Abacus platform
with the lowest structural mode frequency of 0.002 Hz is avoided simply by designing
an attitude control system with very low bandwidth (< orbit frequency). However, the
proposed low-bandwidth attitude control system utilizes a concept of cyclic disturbance
accommodation to provide ±5 arcmin pointing of the Abacus platform in the presence of
large external disturbances and dynamic modeling uncertainties. Approximately 85,000
kg of propellant per year is required for simultaneous orbit, attitude, and structural
control using 500 1-N electric propulsion thrusters with a specific impulse of 5000 sec.
Only 21,000 kg of propellant per year is required if electric propulsion thrusters with a
specific impulse of 20,000 sec can be developed. As Isp is increased, the propellant mass
decreases but the electric power requirement increases; consequently, the mass of solar
arrays and power processing units increases.

The total dry mass (power processing units, thrusters, tanks, feed systems, etc.) of
electric propulsion systems for the Abacus satellite is estimated as 75,000 kg based on
a minimum of 500 1-N thrusters and a mass/power ratio of 5 kg/kW. The peak power
requirement is estimated as 6 MW based on the total peak thrust requirement of 200 N
and a power/thrust ratio of 30 kW/N.

4.2 Recommendations for Future Research

The baseline control system architecture developed for the Abacus satellite requires
a minimum of 500 ion engines of 1-N thrust level. The capability of present electric
thrusters are orders of magnitude below that required for the Abacus satellite. If the
xenon fueled, 1-kW level, off-the-shelf ion engines available today, are to be employed,
the number of thrusters would be increased to 15,000. The actual total number of ion
engines will further increase significantly when we consider the ion engine’s lifetime, relia-
bility, duty cycle, redundancy, etc. Consequently, a 30-kW, 1-N level electric propulsion
thruster with a specific impulse greater than 5,000 sec needs to be developed for the
Abacus satellite if excessively large number of thrusters are to be avoided.

Several high-power electric propulsion systems are currently under development. For
example, the NASA T-220 10-kW Hall thruster recently completed a 1,000-hr life test.
This high-power (over 5 kW) Hall thruster provides 500 mN of thrust at a specific
impulse of 2,450 sec and 59% total efficiency. Dual-mode Hall thrusters, which can
operate in either high-thrust mode or high-Isp mode for efficient propellant usage, are
also being developed.

The exhaust gas from an electric propulsion system forms an essentially neutral
plasma beam extending for large distances in space. Because little is known yet about
the long-term effect of an extensive plasma on geosynchronous satellites with regard
to communications, solar cell degradation, etc, the use of lightweight, space-assembled
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Table 4.1: Technology advancement needs for the Abacus SSPS

Current Enabling
Electric Thrusters 3 kW, 100 mN 30 kW, 1 N

Isp = 3, 000 sec Isp > 5, 000 sec
(5,000–10,000 thrusters) (500–1,000 thrusters)

CMGs 20 N-m-s/kg 2,000 N-m-s/kg
5,000 N-m-s/unit 500,000 N-m-s/unit
(500,000 CMGs) (5,000 CMGs)

Space-Assembled 66,000 N-m-s/kg
Momentum Wheels 4 ×108 N-m-s/unit
(300-m diameter) (5–10 MWs)

large-diameter momentum wheels may also be considered as an option for the Abacus
satellite; therefore, these devices warrant further study. The electric thrusters, CMGs,
and momentum wheels are compared in Table 4.1 in terms of their technology advance-
ment needs. It is emphasized that both electrical propulsion and momentum wheel
technologies require significant advancement to support the development of large SSPS.

Despite the huge size and low structural frequencies of the Abacus satellite, the
control-structure interaction problem appears to be a tractable one because the tight
pointing control requirement can be met even with a control bandwidth that is much
lower than the lowest structural frequency. However, further detailed study needs to
be performed for achieving the required 5-arcmin microwave beam pointing accuracy
in the presence of transmitter/reflector-coupled structural dynamics, Abacus platform
thermal distortion and vibrations, hardware constraints, and other short-term impulsive
disturbances.

Although the rotating reflector concept of the Abacus satellite eliminates massive
rotary joint and slip rings of the 1979 SSPS reference concept, the transmitter fixed to
the Abacus platform results in unnecessarily tight pointing requirements imposed on the
platform. Further system-level tradeoffs will be required for the microwave-transmitting
antenna design, such as whether or not to gimbal it with respect to the platform, use
mechanical or electronic beam steering, and so forth.

The following research topics of practical importance in the areas of dynamics and
control of large flexible space platforms also need further detailed investigation to support
the development of large SSPS.

• Thermal distortion and structural vibrations due to solar heating
• Structural distortion due to gravity-gradientloading
• Simultaneous eccentricity and longitude control
• Attitude control during the solar eclipses
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• Orbit and attitude control during assembly
• Attitude and orbit determination problem
• Reflector tracking and pointing control problem
• Microwave beam pointing analysis and simulation
• Space-assembled, large-diameter momentum wheels
• Electric propulsion systems for both orbit transfer and on-orbit control
• Backup chemical propulsion systems for attitude and orbit control
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Appendix A

Simulation of Orbital Motion

A.1 Introduction

Numerical simulations of orbital motion, the results of which are presented in Chapters
1 and 2, employ the algorithms described briefly in what follows.

Encke’s method, as described in Sec. 9.4 of Ref. [16], and in Sec. 9.3, of Ref. [2], lies
at the heart of a MATLAB/SIMULINK computer program used to integrate dynamical
and kinematical equations governing relative translational motion of two bodies.

This appendix begins with a brief description of the general relationship for two-body
motion, then provides an overview of Encke’s method and how it is carried out in the
computer program, and ends with a presentation of the expressions used in computing
the various contributions to the perturbing forces exerted on the two bodies.

A.2 Two-Body Motion

As discussed in Chapter 2, the relative orbital motion of two bodies is described by

~̈r +
µ

r3
~r = ~f = ~fB − ~fP (1)

where ~r is the position vector from the mass center P ? of a planet P to the mass center
B? of a body B, r is the magnitude of ~r, ~̈r indicates the second derivative of ~r with

respect to time t in an inertial or Newtonian reference frame N , and µ
4
= G(mP +mB),

where G is the universal gravitational constant, mP is the mass of P , and mB is the
mass of B.

If P were a sphere with uniform mass distribution, or a particle, and if B were
a particle, then the gravitational force exerted by P on B would be given by ~g =
−GmP mB ~r/r

3. The force exerted by B on P would be simply −~g. The vector ~fB
represents the resultant force per unit mass acting on B, other than ~g/mB; ~fP represents
the resultant force per unit mass acting on P , other than −~g/mP .
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When ~f is as large or larger than µ~r/r3, integration of Eq. (1) is advisable and is

referred to as Cowell’s method. On the other hand, when ~f is small in comparison to
µ~r/r3 Cowell’s method can be disadvantageous in terms of numerical efficiency, and a
different strategy known as Encke’s method may be preferred.

A.3 Encke’s Method

The method of Encke requires the solution of ordinary differential equations governing
the behavior of ~δ,

~δ
4
= ~r − ~ρ (2)

where ~ρ represents the solution of Eq. (1) with ~f = 0; the path traced out by ~ρ is a
conic section, known as the osculating orbit. The orbit described by ~r is the actual or
true orbit of B about P , which differs from the osculating orbit whenever ~f does not
vanish.

The behavior of ~δ is governed by Eq. (9.27) of Ref. [16],

~̈δ = ~f − µ

ρ3
[~δ + f(q)~r] (3)

where ~̈δ indicates the second derivative of ~δ with respect to time t in N , and ρ is the
magnitude of ~ρ. The function f of q is given by

f(q) = q
3 + 3q + q2

1 + (1 + q)
3
2

(4)

where q is defined as

q
4
=
~δ · (~δ − 2~r)

~r · ~r (5)

The values of ~δ and ~̇δ are both zero at the beginning of each simulation, and also
following orbit rectification, or the point at which the osculating position and veloc-
ity, ~ρ and ~̇ρ, are made equal to the true position and velocity, ~r and ~̇r, respectively.

Rectification is performed when, as suggested in Ref. [2], (~δ · ~δ)1/2 ≥ 0.01(~ρ · ~ρ)1/2.
The osculating orbit is determined as a function of time using initial values for ~ρ and

~̇ρ (which change with each rectification), together with Battin’s universal formulae for
conic orbits according to Eqs. (3.33) and (4.84), and the relationships given in Prob. 4–
21 of Ref. [1]. Use of the universal formulae requires a generalized anomaly χ, obtained
by Newtonian iteration as set forth in Eq. (4.4–15) of Ref. [2], or at the top of p. 219 in
Ref. [1]; iteration is terminated when the time associated with χ through the generalized
form of Kepler’s equation [Eq. (4.81), Ref. [1]], is within 1× 10−4 sec of the simulation
time t.
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Six scalar, first order, ordinary differential equations corresponding to the second
order vector Eq. (3) are integrated using a variable step, Runge-Kutta 4-5 scheme, with
relative and absolute error tolerances set to 1× 10−8. The true position and velocity, ~r
and ~̇r, are used to calculate classical orbital elements a, e, i, Ω, ω, and M according to
the material in Secs. 2.3 and 2.4 of Ref. [2], and Secs. 3.3 and 4.3 of Ref. [1].

A.4 Contributions to the Perturbing Force

In the case of geosynchronous satellites the perturbing force per unit mass ~f receives
significant contributions from the gravitational attraction of the Sun and Moon, Earth’s
tesseral gravitational harmonics of degree 2 and orders 0 and 2, and solar radiation
pressure, as discussed in Sec. 2.2. The remainder of this section contains the expressions
employed in the computer program for these contributions, denoted respectively as ~fs,
~fm, ~f2,0, ~f2,2, and ~fr, such that

~f = ~fs + ~fm + ~f2,0 + ~f2,2 + ~fr (6)

A.4.1 Solar and Lunar Gravitational Attraction

The gravitational force per unit mass exerted by the Sun on P is given by µs~rs/r
3
s , where

µs is the product of G and the Sun’s mass, ~rs is the position vector from P ? to the Sun’s
mass center, and rs is the magnitude of ~rs. Likewise, the gravitational force per unit
mass exerted by the Sun on B is given by µs(~rs − ~r)/|~rs − ~r|3. Therefore,

~fs =
µs(~rs − ~r)
|~rs − ~r|3

− µs~rs
r3
s

(7)

When ~r is small in comparison to ~rs, numerical difficulties can be encountered in the
evaluation of the right hand member of Eq. (7); therefore, an alternate form of ~fs is
used, as suggested in Eq. (8.61) of Ref. [1]:

~fs = − µs
|~rs − ~r|3

[~r + f(qs)~rs] (8)

where

qs
4
=
~r · (~r − 2~rs)

~rs · ~rs
(9)

The position vector ~rs from Earth’s mass center (actually, the Earth-Moon barycen-
ter) to the Sun’s mass center, projected onto geocentric-equatorial directions and referred
to the ecliptic of date, is obtained as a function of t with the formulae and numerical
values given on p. E4 of Ref. [3].

Similarly, the contribution of lunar gravitational attraction to ~f is given by

~fm =
µm(~rm − ~r)
|~rm − ~r|3

− µm~rm
r3
m

(10)

121



where µm is the product of G and the Moon’s mass, ~rm is the position vector from P ?

to the Moon’s mass center, and rm is the magnitude of ~rm. Numerical difficulties are
avoided by using the expression

~fm = − µm
|~rm − ~r|3

[~r + f(qm)~rm] (11)

where

qm
4
=
~r · (~r − 2~rm)

~rm · ~rm
(12)

The position vector ~rm from Earth’s mass center to the Moon’s mass center, projected
onto geocentric-equatorial directions, and referred to the mean equator and equinox of
date, is obtained as a function of t with the algorithm set forth on p. D46 of Ref. [3].

A.4.2 Tesseral Harmonics

The computer program makes use of Eq. (12) of Ref. [4] to account for the gravitational
harmonics of P , for any degree n and order m; in the simulations performed for this
study, n and m are limited to 2. Numerical values of the gravitational coefficients,
gravitational parameter of Earth, and mean equatorial radius, are those of the Goddard
Earth Model T1 as reported in Ref. [5].

Earth’s oblateness is represented by a zonal harmonic of degree 2 and order 0, and
is responsible for precessions in a satellite’s orbit plane and argument of perigee. The
contribution of this harmonic to the force per unit mass exerted by P on B is given in
Eq. (45) of Ref. [4] (also Prob. 3.7b in Ref. [6]) as

~f2,0 = −µ⊕J2
R⊕

2

r4

[
3 sinφ~e3 +

3

2
(1− 5 sin2 φ)

~r

r

]
(13)

where µ⊕ is the gravitational parameter of the Earth, the product of G and the Earth’s
mass; R⊕ is the mean equatorial radius of the Earth (6378.137 km), r is the magnitude
of ~r, and φ is the geocentric latitude of B. Unit vector ~e3 is fixed in the Earth in the
direction of the north polar axis.

The contribution of oblateness to the force per unit mass exerted by B on P is given
by −mB

~f2,0/mP , and the contribution of oblateness to ~f is thus [1 + (mB/mP )]~f2,0. In
the case of the SSP orbiting Earth mB = 25 × 106 kg and mP = 5.98 × 1024 kg, so
mB/mP = 4 × 10−18, which can be neglected in comparison to 1; therefore, the entire

contribution of oblateness to ~f is essentially equal to ~f2,0.

The contribution ~f2,1 of the tesseral harmonic of degree 2 and order 1 vanishes because
the harmonic coefficients S2,1 and C2,1 are both zero. The harmonic of degree 2 and order
2 can cause the longitude of of a geosynchronous spacecraft to drift; from Eq. (12) of
Ref. [4] the contribution to the force per unit mass exerted by P on B is given by

~f2,2 =
µ⊕R⊕

2

r5

{
C2,2C2 + S2,2S2

r

[
A2,3~e3 − (sinφA2,3 + 5A2,2)

~r

r

]
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+ 2A2,2 [(C2,2C1 + S2,2S1)~e1 + (S2,2C1 − C2,2S1)~e2]
}

(14)

where unit vectors ~e1 and ~e2 are fixed in the Earth: ~e1 lies in the equatorial plane
parallel to a line intersecting Earth’s geometric center and the Greenwich meridian, and
~e2 = ~e3 × ~e1.

Equations (6) and (7) of Ref. [4] indicate that the required derived Legendre poly-
nomials are A2,2 = 3 and A2,3 = 0. In addition, Eqs. (9) and (10) of Ref. [4] show
that

S1 = ~r · ~e2 = r cosφ sinλ, C1 = ~r · ~e1 = r cosφ cosλ (15)

S2 = 2(r cosφ)2 sinλ cosλ, C2 = (r cosφ)2(cos2 λ− sin2 λ) (16)

where λ is the geographic longitude of B measured eastward from the Greenwich merid-
ian. Therefore,

~f2,2 =
µ⊕R⊕

2

r4

{
−15 cos2 φ[C2,2(cos2 λ− sin2 λ) + 2S2,2 sinλ cosλ]

~r

r

+ 6 cosφ [(C2,2 cosλ+ S2,2 sinλ)~e1 + (S2,2 cosλ− C2,2 sinλ)~e2]
}

(17)

As in the case of ~f2,0, mB/mP is neglected in comparison to 1, and ~f2,2 thus constitutes

the entire contribution of the present harmonic to ~f .

A.4.3 Solar Radiation Pressure

The force per unit mass of solar radiation pressure exerted on B is given by −C(~rs −
~r)/(mB|~rs − ~r|) where C is a constant, 60 N. We neglect the solar radiation pressure
exerted on the Earth, and write

~fr =
C(~r − ~rs)
mB|~rs − ~r|

(18)
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